Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Уравнение Лапласа, решение задачи Дирихле в круге методом Фурье

Тип: курсовая работа
Категория: Математика
Скачать
Купить
Пьер-Симон Лаплас - выдающийся французский математик, физик и астроном, один из создателей теории вероятностей. Уравнение Лапласа в двумерном пространстве. Способы трехмерного уравнения Лапласа. Особенности решения задачи Дирихле в круге методом Фурье.
Краткое сожержание материала:

Размещено на

Содержание

Ведение

1.Оператор Лапласа

2.Уравнение Лапласа в двумерном пространстве

3.Уравнение Лапласа в случае пространственных переменных

4.Решение задачи Дирихле в круге методом Фурье

Заключение

Список литературы

лаплас уравнение трехмерный пространство

Введение

Пьер-Симо?н Лаплас ( 23 марта 1749 -- 5 марта 1827) -- выдающийся французский математик, физик и астроном; известен работами в области небесной механики, дифференциальных уравнений, один из создателей теории вероятностей. Заслуги Лапласа в области чистой и прикладной математики и особенно в астрономии громадны: он усовершенствовал почти все отделы этих наук. Был членом Французского Географического общества.

При решении прикладных задач Лаплас разработал методы математической физики, широко используемые и в наше время. Особенно важные результаты относятся к теории потенциала и специальным функциям. Его именем названо преобразование Лапласа и уравнение Лапласа. Он далеко продвинул линейную алгебру; в частности, Лаплас дал разложение определителя по минорам.

Лаплас расширил и систематизировал математический фундамент теории вероятностей, ввёл производящие функции. Первая книга «Аналитической теории вероятностей» посвящена математическим основам; собственно теория вероятностей начинается во второй книге, в применении к дискретным случайным величинам. Там же -- доказательство предельных теорем Муавра--Лапласа и приложения к математической обработке наблюдений, статистике народонаселения и «нравственным наукам».

Лаплас развил также теорию ошибок и приближений методом наименьших квадратов.

1.Оператор Лапласа

Оператор Лапласа - дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом . Функции F он ставит в соответствие функцию

Оператор Лапласа эквивалентен последовательному взятию операций градиента и дивергенции.

Градиент-- вектор, показывающий направление наискорейшего возрастания некоторой величины , значение которой меняется от одной точки пространства к другой (скалярного поля). Например, если взять в качестве высоту поверхности Земли над уровнем моря, то её градиент в каждой точке поверхности будет показывать «направление самого крутого подъёма». Величина (модуль) вектора градиента равна скорости роста в этом направлении. Для случая трёхмерного пространства, градиентом называется векторная функция с компонентами , где - некоторая скалярная функция координат x,y,z.

Если - функция n переменных то ее градиентом называется n-мерный вектор

Компоненты которого равны частным производным по всем ее аргументам. Градиент обозначается grad, или с использованием оператора набла,

Из определения градиента следует, что:

Смысл градиента любой скалярной функции f в том, что его скалярное произведение с бесконечно малым вектором перемещения дает полный дифференциал этой функции при соответствующем изменении координат в пространстве, на котором определена f, то есть линейную (в случае общего положения она же главная) часть изменения f при смещении на . Применяя одну и ту же букву для обозначения функции от вектора и соответствующей функции от его координат, можно написать:

Стоит здесь заметить, что поскольку формула полного дифференциала не зависит от вида координат x i, то есть от природы параметров x вообще, то полученный дифференциал является инвариантом, то есть скаляром, при любых преобразованиях координат, а поскольку dx -- это вектор, то градиент, вычисленный обычным образом, оказывается ковариантным вектором, то есть вектором, представленным в дуальном базисе, какой только и может дать скаляр при простом суммировании произведений координат обычного (контравариантного), то есть вектором, записанным в обычном базисе.

Таким образом, выражение (вообще говоря -- для произвольных криволинейных координат) может быть вполне правильно и инвариантно записано как:

Или опуская по правилу Эйнштейна знак суммы,

Дивергенция -- дифференциальный оператор, отображающий векторное поле на скалярное (то есть операция дифференцирования, в результате применения которой к векторному полю получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле» (точнее -- насколько расходятся входящий и исходящий поток).

Если учесть, что потоку можно приписать алгебраический знак, то нет необходимости учитывать входящий и исходящий потоки по отдельности, всё будет автоматически учтено при суммировании с учетом знака. Поэтому можно дать более короткое определение дивергенции:

дивергенция -- это дифференциальный оператор на векторном поле, характеризующий поток данного поля через поверхность малой окрестности каждой внутренней точки области определения поля.

Оператор дивергенции, применённый к полю F , обозначают как

или

Определение дивергенции выглядит так:

где ФF -- поток векторного поля F через сферическую поверхность площадью S, ограничивающую объём V. Ещё более общим, а потому удобным в применении, является определение, когда форма области с поверхностью S и объёмом V допускается любой. Единственным требованием является её нахождение внутри сферы радиусом, стремящимся к нулю. Это определение, в отличие от приводимого ниже, не привязано к определённым координатам, например, к декартовым, что может представлять дополнительное удобство в определённых случаях. (Например, если выбирать окрестность в форме куба или параллелепипеда, легко получаются формулы для декартовых координат, приведённые в следующем параграфе).

таким образом значение оператора Лапласа в точке может быть истолковано как плотность источников (стоков) потенциального векторного поля gradF в этой точке. В декартовой системе координат оператор Лапласа часто обозначается следующим образом то есть в виде скалярного произведения оператора набла на себя.

2.Уравнение Лапласа в двумерном пространстве

При исследовании стационарных процессов различной физической природы (колебания, теплопроводность, диффузия и др.) обычно приходят к уравнениям эллиптического типа. Наиболее распространенным уравнением этого типа является Уравнение Лапласа

где

где u(х, у, z) -- функция независимых переменных х, у, z. Названо по имени французского учёного П. Лапласа, применившего его в работах по тяготению (1782). К уравнению Лапласа приводят многие задачи физики и механики, в которых физическая величина является функцией только координат точки. Так, уравнение Лапласа описывает потенциал сил тяготения в области, не содержащей тяготеющих масс, потенциал электростатического поля -- в области, не содержащей зарядов, температуру при стационарных процессах и т. д. Функции, являющиеся решениями уравнения Лапласа, называются гармоническими. Уравнение Лапласа-- частный случай Пуассона уравнения. Оператор называется оператором Лапласа.

Функция U называется гармонической в области T, если она непрерывна в этой области вместе со своими производными до 2-го порядка и удовлетворяет уравнению Лапласа.

При изучении свойств гармонических функций были разработаны различные математические методы, оказавшиеся плодотворными и в применении к уравнениям гиперболического (например, уравнение колебаний струны) и параболического типов (например, уравнение теплопроводности). Мы будем искать решение краевых задач для простейших областей методом разделения переменных. Решение краевых задач для уравнения Лапласа может быть найдено методом разделения переменных в случае некоторых простейших областей (круг, прямоугольник, шар, цилиндр и др.). Рассмотрим некоторые из них.

Трехмерное уравнение - Лапласа

Трехмерное уравнение Лапласа часто встречается в теории тепло - и массопереноса, гидро и аэромеханике, теории упругости, электростатике и других областях механики и физики. В теории тепло - и массопереноса оно описывает стационарное распределение температуры при отсутствии источников тепла в рассматриваемой области.

Для трехмерного уравнения Лапласа существуют также координаты, допускающие 7 -разделение переменных.

Замечательно, что и для трехмерного уравнения Лапласа может быть построен интегральный оператор с аналогичным свойством.

Координаты х, у, z, допускающие решения с - разделенными переменными. Трехмерное уравнение Пуассона, как и трехмерное уравнение Лапласа, часто встречается в теории тепло - и массопереноса, гидро - и аэромеханике, теории упругости, электростатике и других областях механики и физики. Оно описывает стационарное распределение температуры при наличии источников ( или стоков) тепла в рассматриваемой области.

Компонента / ZQO должна даваться скалярным решением трехмерного уравнения Лапласа.

Компонента / IQO должна даваться скалярным решением трехмерного уравнения Лапласа.

Показать, что если ф ( г) - решение трехмерного уравнения Лапласа, то и ф ( г) Ц - 1 - также решение.

Задача в этом случае может быть решена классически...

Другие файлы:

Решение неоднородной задачи Дирихле для уравнения Лапласа методом R-функций
Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Числ...

Решение задачи Неймана для уравнения Пуассона в прямоугольной области
Разработка программы на языке С++ для решения дифференциального уравнения Лапласа в прямоугольной области методом сеток. Численное решение задачи Дири...

Решение задачи Дирихле для уравнения Пуассона в квадратной области
Простейшая разностная схема для задачи Дирихле: построение, аппроксимация и устойчивость. Описания метода установления. Анализ алгоритмов, реализующих...

Решение задачи Дирихле для уравнения Лапласа методом сеток
Поставленная задача решается численно с помощью программы, реализующей метод сеток , разработанный для численного решения задачи Дирихле для уравнений...

Уравнение Лапласа, решение задачи Дирихле в круге методом Фурье
При решении прикладных задач Лаплас разработал методы математической физики, широко используемые и в наше время. Особенно важные результаты относятся...