Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Коммуникации и связь

Измерение спектральных характеристик волоконных световодов с органическими красителями

Тип: дипломная работа
Категория: Коммуникации и связь
Скачать
Купить
Обоснование выбора оптических методов измерения температуры в условиях воздействия электромагнитных полей. Поглощение света полупроводниками и методика определения спектральных характеристик полимерных оптических волокон, активированных красителями.
Краткое сожержание материала:

Размещено на

Введение

Измерение температуры является одной из важнейших и неотъемлемых составляющих многих технологических процессов. Однако в областях техники с воздействием сильных электромагнитных полей, например, в силовой энергетике [1-3] (силовые электрические машины, мощные трансформаторы, усилители и т.д.), в системах с СВЧ-излучением (мощная радиопередающая аппаратура, СВЧ-печи, медицинские устройства СВЧ-терапии) и др., осуществление измерения температуры затруднительно и порой невозможно в связи с отсутствием нужных измерительных устройств.

Традиционные устройства измерения температуры, такие как термопары, термисторы, терморезисторы и т. д., в системах с воздействием сильных электромагнитных полей могут быть применены только совместно со сложными системами экранировки, так как возникают помехи, связанные с взаимодействием металлических компонентов измерительных устройств с сильными электромагнитными полями. Экранирующие системы зачастую невозможно использовать по конструктивным и технологическим причинам. Основными требованиями, предъявляемым к устройствам измерения температуры в системах с воздействием сильных электромагнитных полей являются: отсутствие собственной проводимости; простота и универсальность компонентов; малые размеры; возможность проведения измерений на расстоянии.

Требованию отсутствия собственной проводимости отвечают измерительные устройства, в основу которых положены оптические методы. Среди оптических методов измерения температуры можно выделить две основные группы -- амплитудные и фазовые. Амплитудные измерительные устройства подходят по требованиям по таким параметрам как простота, универсальность компонентов и малым размерам. Принцип действия таких устройств основан на изменении мощности оптического сигнала при изменении температуры окружающей среды. С целью проведения дистанционных измерений наиболее удобно использовать волоконно-оптические линии связи в качестве среды передачи оптических сигналов.

В основе современных волоконно-оптических амплитудных методов измерения температуры лежат такие физические явления, как: эффект изменения теплового излучения (оптическая пирометрия) [4, 5]; эффект смещения края полосы поглощения света, проходящего через кристалл полупроводника [4-8]; эффект температурного тушения флуоресценции [4-7]; эффект изменения поглощения света в дисперсных средах (изооптическая термометрия) [9, 10]; различные эффекты изменения пропускания или отражения [4-7, 11].

На сегодняшний день существует очень мало оптических устройств измерения температуры в системах с воздействием сильных электромагнитных полей. В их состав входит дорогостоящая и сложная аппаратура обработки и регистрации оптических сигналов, поэтому они не удовлетворяют требованиям простоты и универсальности компонентов и не являются доступными.

Глава 1. Литературный обзор

1.1 Обоснование выбора оптических методов измерения температуры в условиях воздействия сильных электромагнитных полей

В настоящее время существуют различные методы измерения температуры, которые достаточно широко освещены в литературе, например в [12, 13]. Температуру измеряют с помощью устройств, использующих различные свойства жидкостей, газов и твердых тел. В табл. 1.1 приведены наиболее распространенные устройства для измерения температуры и практические пределы их применения. Анализ отечественных и зарубежных публикаций о методах измерения температуры в устройствах в присутствии сильных электромагнитных полей показал, что существующие неоптические методы не позволяют проводить измерение температуры непосредственно сред, подвергаемых нагреву при воздействии сильных электромагнитных полей. Например, разработанные фирмой Samsung температурные датчики для бытовых микроволновых печей [14] на основе термоэлектрических эффектов не регистрируют процесс нагрева продуктов в рабочей камере печи, а лишь сигнализируют о перегреве элементов конструкции посредством контроля температуры в отсеке воздухообмена печи. В условиях присутствия сильных электромагнитных полей, в том числе и полей СВЧ диапазона, в традиционных устройствах для измерения температуры на основе термопар, термисторов, терморезисторов и других используются сложные системы экранирования [15 - 17]. Основными причинами необходимости экранирования являются следующие: нагревание металлических компонентов в высокочастотных электромагнитных полях, опасность появления кратковременных высоковольтных разрядов, а также опасность попадания искры через металлические провода на легковоспламеняющиеся и взрывоопасные среды. Кроме того, металлические провода сами влияют на нагрев среды. Так при СВЧ нагревании поля могут переотражаться проводами, что вызывает перераспределение теплового поля. Кроме того, вследствие высокой теплопроводности, металлические провода в точках измерения создают значительное изменение температуры, что приводит к искажению данных измерения.

Способ измерения распределения теплового поля нагрева электромагнитными полями СВЧ диапазона без необходимости экранирования описан в [18]. Предлагается использовать систему преобразователей в виде матрицы М х N термочувствительных непроводящих элементов из материала с углеродными добавками, размещенными на диэлектрическом основании. Данную матрицу после СВЧ нагрева вынимают из СВЧ камеры, помещают в термостат и совмещают с матрицей полупроводниковых термодатчиков, идентичной матрице термочувствительных непроводящих элементов, измеряют напряжения на выходах полупроводниковых термодатчиков, пропорциональные температурам термочувствительных непроводящих элементов. Такая система не обеспечивает регистрацию температуры в процессе технологического цикла в режиме реального времени.

Решением проблем, связанных с возникновением помех и наводок из-за присутствия металлических компонентов в традиционных температурных датчиках при нагревании в сильных электромагнитных полях может стать применение измерительных устройств на основе, оптических методов измерения температуры. Требования проведения дистанционных измерений могут быть выполнены при построении методов измерения с использованием волоконно-оптических линий.

Таб. 1.1

Устройства для промышленных измерений температур

Термометрическое

свойство

Наименование устройства

Диапазон измеряемых температур, °С

Возможность применения в условиях воздействия сильных электромагнитных полей

Нижний

предел

Верхний предел

Тепловое

расширение

Жидкостные

стеклянные

термометры

-200

1200

+

Изменение давления

Манометрические

термометры

-160

600

-

Изменение электрического сопротивления

Электрические

термометры

сопротивления

-200

500

-

Полупроводниковые

термометры

сопротивления

(термисторы,

терморезисторы)

-90

180

-

Термоэлектрические эффект(термо-э.д.с.)

Термоэлектрические термометры (термопары) стандартизованные

-50

1600

-

Термоэлектрические

термометры

(термопары)

специальные

1300

2500

-

Тепловое

излучение

Пирометры

(оптические,

радиационные,

фотоэлектрические,

цветовые)

600

6000

+

1.2 Оптические методы измерения температуры

На сегодняшний день разработано большое количество оптических устройств для измерения температуры на основе различных физических эффектов [4 - 8]. По принципу действия все оптические методы измерений делятся...

Другие файлы:

Волоконные световоды для передачи информации
Излагаются основы применения волоконных световодов в оптических линиях связи. Проводится теоретический анализ распространения электромагнитных волн в...

Современные оптоволоконные кабели
Световод - посредник между передатчиком и приемником. Пропускная способность волоконных световодов. Оптические кабели, их конструкции и свойства. Преи...

Изучение методов нахождения спектральных характеристик
Нахождение собственных чисел и собственных векторов в связи с широкой областью использования краевых, начально-краевых и спектральных задач в науке и...

Волоконно-оптические кабели
Проектирование кабелей.Планирование систем.Физические и химические основы волоконных световодов....

Регулярные сигналы
Формы регулярных сигналов. Исследование гармонического сигнала, расчет его спектральных характеристик. Сложный периодический сигнал, результаты расчет...