Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Похідні та диференціали функції багатьох змінних

Тип: реферат
Категория: Математика
Скачать
Купить
Частинні похідні та диференційованість функції: поняття та теореми. Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків. Інваріантність форми повного диференціала. Диференціювання неявної функції.
Краткое сожержание материала:

Размещено на

ПОХІДНІ ТА ДИФЕРЕНЦІАЛИ ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ

1 Частинні похідні

Нехай функція визначена в деякому околі точки .
Надамо змінній x приросту, залишаючи змінну незмінною, так, щоб точка належала заданому околу.

Величина

називається частинним приростом функції за змінною x.

Аналогічно вводиться частинний приріст функції за змінною:

.

Якщо існує границя

,

то вона називається частинною похідною функції в точці за змінною x і позначається одним із таких символів:

.

Аналогічно частинна похідна функції за визначається як границя

і позначається одним із символів:

.

Згідно з означенням при знаходженні частинної похідної обчислюють звичайну похідну функції однієї змінної x, вважаючи змінну сталою, а при знаходженні похідної сталою вважається змінна x. Тому частинні похідні знаходять за формулами і правилами обчислення похідних функцій однієї змінної.

Частинна похідна (або) характеризує швидкість зміни функції в напрямі осі (або).

З'ясуємо геометричний зміст частинних похідних функції двох змінних. Графіком функції є деяка поверхня (рис 1). Графіком функції є лінія перетину цієї поверхні з площиною. Виходячи з геометричного змісту похідної для функції однієї змінної, отримаємо, що, де- кут між віссю і дотичною, проведеною до кривої в точці. Аналогічно.

Рисунок 1 - Геометричний зміст частинних похідних

Для функції n змінних можна знайти n частинних похідних:

,

де

,

.

Щоб знайти частинну похідну, необхідно взяти звичайну похідну функції за змінною, вважаючи решту змінних сталими.

Якщо функція задана в області і має частинні похідні в усіх точках, то ці похідні можна розглядати як нові функції, задані в області.

Якщо існує частинна похідна за x від функції, то її називають частинною похідною другого порядку від функції за змінною x і позначають або .

Таким чином, за означенням

або.

Якщо існує частинна похідна від функції за змінною, то цю похідну називають мішаною частинною похідною другого порядку від функції і позначають, або.

Отже, за означенням

або .

Для функції двох змінних можна розглядати чотири похідні другого порядку:

.

Якщо існують частинні похідні від частинних похідних другого порядку, то їх називають частинними похідними третього порядку функції, їх вісім:

.

Виникає запитання: чи залежить результат диференціювання від порядку диференціювання? Інакше кажучи, чи будуть рівними між собою мішані похідні, якщо вони взяті за одними і тими самими змінними, одне й те саме число разів, але в різному порядку? Наприклад, чи дорівнюють одна одній похідні

і або і?

У загальному випадку відповідь на це запитання негативна.

Проте справедлива теорема, яку вперше довів К.Г.Шварц.

Теорема (про мішані похідні). Якщо функція визначена разом із своїми похідними в деякому околі точки , причому похідні та неперервні в точці, то в цій точці

.

Аналогічна теорема справедлива для будь-яких неперервних мішаних похідних, які відрізняються між собою лише порядком диференціювання.

2 Диференційованість функції

похідна диференціал функція змінна

Нехай функція визначена в деякому околі точки. Виберемо прирости і так, щоб точка належала розглядуваному околу і знайдемо повний приріст функції в точці:

.

Функція називається диференційовною в точці М, якщо її повний приріст в цій точці можна подати у вигляді

, (1)

де та - дійсні числа, які не залежать від та , - нескінченно малі при і функції.

Відомо, що коли функція однієї змінної диференційовна в деякій точці, то вона в цій точці неперервна і має похідну. Перенесемо ці властивості на функції двох змінних.

Теорема 1 (неперервність диференційовної функції).

Якщо функція диференційовна в точці М, то вона неперервна в цій точці.

Доведення

Якщо функція диференційовна в точці М, то з рівності (1) випливає, що. Це означає, що функція неперервна в точці М.

Теорема 2 (існування частинних похідних диференційовної функції). Якщо функція диференційовна в точці , то вона має в цій точці похідні та і.

Доведення

Оскільки диференційовна в точці, то справджується рівність (1). Поклавши в ній, отримаємо,

.

Поділимо обидві частини цієї рівності на і перейдемо до границі при:

.

Отже, в точці існує частинна похідна. Аналогічно доводиться, що в точці існує частинна похідна.

Твердження, обернені до теорем 1 і 2, взагалі кажучи, неправильні, тобто із неперервності функції або існування її частинних похідних ще не випливає диференційовність. Наприклад, функція неперервна в точці, але не диференційовна в цій точці. Справді, границі

не існує, тому не існує й похідної. Аналогічно впевнюємося, що не існує також похідної. Оскільки задана функція в точці не має частинних похідних, то вона в цій точці не диференційовна.

Більш того, відомо приклади функцій, які є неперервними в деяких точках і мають в них частинні похідні, але не є в цих точках диференційовними.

Теорема 3 (достатні умови диференційовності ).

Якщо функція має частинні похідні в деякому околі точки і ці похідні неперервні в точці М, то функція диференційовна в точці М.

Доведення

Надамо змінним x і приростів , таких, щоб точка належала даному околу точки . Повний приріст функції запишемо у вигляді

. (2)

Вираз у перших квадратних дужках рівності (2) можна розглядати як приріст функції однієї змінної x, а в других - як приріст функції змінної . Оскільки дана функція має частинні похідні, то за теоремою Лагранжа отримаємо:

.

Похідні та неперервні в точці М, тому

,

.

Звідси випливає, що

,

,

де, - нескінченно малі функції при і.

Підставляючи ці вирази у рівність (2), знаходимо

, а це й означає, що функція диференційовна в точці.

З теорем 2 і 3 випливає такий наслідок: щоб функція була диференційовною в точці, необхідно, щоб вона мала в цій точці частинні похідні, і достатньо, щоб вона мала в цій точці неперервні частинні похідні.

Зазначимо, що для функції однієї змінної існування похідної в точці є необхідною і достатньою умовою її диференційовності в цій точці.

3 Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків

Нагадаємо, що коли функція диференційовна в точці, то її повний приріст у цій точці можна подати у вигляді

,

де і при.

Повним диференціалом диференційовної в точці функції називається лінійна відносно та частина повного приросту цієї функції в точці M, тобто

. (3)

Диференціалами незалежних змінних x та назвемо прирости цих змінних. Тоді з урахуванням теореми 2 рівність (3) можна записати так:

. (4)

Аналогічна формула має місце для диференційовної функції трьох змінних:

. (5)

З формул (4) і (5) може здатися, що повний диференціал існуватиме у кожній точці, в якій існують частинні похідні. Але це не так. Згідно з означенням, повний диференціал можна розглядати лише стосовно диференційовної функції.

Теореми та формули для диференціалів функції однієї змінної повністю зберігаються і для диференціалів функцій двох, трьох і т.д. змінних . Так, незалежно від того, від яких аргументів залежать функції u і , завжди справедливі рівності

Покажемо, що різниця між повним приростом і диференціалом при і є нескінченно мала величина вищого порядку, ніж величина.

Дійсно, з формул (1) і (3) маємо

,

оскільки функції - нескінченно малі при, , а та - обмежені функції:

.

Отже, різниця - нескінченно мала величина вищого порядку, ніж. Тому повний диференціал називають також головною частиною повного приросту диференційовної функції. При цьому виконується наближена рівність або

. (6)

Ця рівність тим точніша, чим менша величина. Рівність (6) широко використовується у наближених обчисленнях, оскільки диференціал функції обчислюється простіше, ніж повний приріст.

Покажемо, як за допомогою...

Другие файлы:

Функції багатьох змінних Означення границя та неперервність похідні диференціали

Похідні та диференціали функції багатьох змінних
Згідно з означенням при знаходженні частинної похідної обчислюють звичайну похідну функції однієї змінної x, вважаючи змінну сталою, а при знаходжен...

Функція, її границя та неперервність
Суть функції багатьох змінних, її означення і символіки. Границя і неперервність функції багатьох змінних. Визначення відкритої та замкненої області....

Знаходження похідної функції
Формування знань учнів про похідні сталої, складеної, показникової, логарифмічної та степеневої функцій з довільним дійсним показником. Вивчення теоре...

Теоретичні основи для реалізації розділу "Елементи функціонального аналізу та диференціальне числення функцій багатьох змінних" курсу математичного аналізу за допомогою комп’ютерних технологій
Поняття метричного простору. Збіжність в метричних просторах. Збереження зв’язності при неперервних відображеннях. Приклади повних метричних просторів...