Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Оператор сдвига в гильбертовом пространстве

Тип: дипломная работа
Категория: Математика
Скачать
Купить
Основные понятия и факты теории линейных операторов. Определение и примеры линейных операторов. Ограниченность и норма линейного оператора. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов.
Краткое сожержание материала:

1

Оператор сдвига

Содержание

1. Введение

Часть 1. Оператор сдвига в гильбертовом пространстве

§1. Основные понятия и факты теории линейных операторов

1. Определение и примеры линейных операторов

2. Ограниченность и норма линейного оператора

3. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов

4. Обратный оператор

5. Спектр оператора. Резольвента

§2. Унитарные операторы. Оператор сдвига

6. Взвешенные сдвиги

7. Операторы сдвига в пространстве функции на единичной окружности

Часть 2. Нестандартное расширение оператора сдвига

1. Нестандартное расширение поля действительных чисел

2. Расширение пространств и

3. Операторы сдвига в нестандартном расширении

Заключение

Список литературы

ВВЕДЕНИЕ

Тема для написания дипломной работы была выбрана не случайно. Теория линейных операторов - это интересная и важная область, которая позволяет не только активно применять уже имеющиеся знания по анализу, но и узнать много нового.

В данной работе рассматриваются линейные операторы одностороннего и двустороннего сдвига. Вводятся основные понятия: спектр, резольвента, спектральный радиус оператора. Рассматриваются задачи, в ходе решения которых выясняются некоторые свойства спектров операторов сдвига. Определяется класс взвешенных сдвигов, выводится соотношение для нормы и спектрального радиуса оператора взвешенного сдвига.

Известно, что если рассматривать поле действительных чисел при условии, что аксиома Архимеда не выполняется, то получим новое, расширенное поле, в котором существуют бесконечно большие и бесконечно малые элементы. На основании этого расширения можно построить весь математический анализ - нестандартный анализ.

Естественно, часть основных понятий и свойств линейных операторов было бы интересно определить и доказать и в нестандартном анализе, что и было сделано в работе.

В частности, был установлен следующий факт: хотя стандартный оператор сдвига не имеет собственных векторов, но его нестандартное расширение имеет «почти собственные» векторы, т. е. векторы, в определенном смысле бесконечно близкие к собственным.

Часть 1. Оператор сдвига в гильбертовом пространстве

§1. Основные понятия и факты теории линейных операторов

1. Определение и примеры линейных операторов

Пусть Е и Е1 - два линейных нормированных пространства над полем комплексных чисел. Линейным оператором, действующим из Е в Е1 называется отображение ( удовлетворяющее условию

для всех .

Совокупность DA всех тех , для которых отображение А определено, называется областью определения оператора А; вообще говоря, не предполагается, что DA=E , однако мы всегда будем считать, что DA есть линейное многообразие, то есть, если х,у DA , то и при любых .

Определение 1. Оператор называется непрерывным в точке х0 DA , если для любой окрестности V точки у0=Ах0 существует такая окрестность U точки х0 , что АхV , как только х. Оператор А называется непрерывным, если он непрерывен в каждой точке х DA.

Поскольку Е и Е1 - нормированные пространства, то это определение равносильно следующему: оператор А называется непрерывным, если выполняется следующее условие: ( .

Примеры линейных операторов

Пусть А - линейный оператор, отображающий n-мерное пространство Rn c базисом е1, …, еn в m-мерное пространство Rm с базисом f1, …,fm . Если х - произвольный вектор из Rn , то и, в силу линейности оператора А .

Таким образом, оператор А задан, если известно, в какие элементы он переводит базисные векторы е1,…, еn . Рассмотрим разложение вектора Аеi по базису f1, …, fm . Имеем . Следовательно, оператор А определяется матрицей коэффициентов аij . Образ пространства Rn и Rm представляет собой линейное пространство, размерность которого равна, очевидно, рангу матрицы , т.е. во всяком случае не превосходит n (свойство ранга матрицы). Отметим, что в конечномерном пространстве всякий линейный оператор автоматически непрерывен.

Рассмотрим гильбертово пространство Н и в нем некоторое подпространство Н1 . Разложив Н в прямую сумму подпространства Н1 и его ортогонального дополнения, т.е. представив каждый элемент в виде ( положим Рh=h1. Этот оператор Р естественно назвать оператором проектирования, проектирующим все пространство Н на Н1. Очевидно, что Р является линейным и непрерывным оператором.

Рассмотрим в пространстве непрерывных функций на отрезке [a;b] с нормой оператор, определяемый формулой

, (1)

где k(s,t) - некоторая фиксированная непрерывная функция двух переменных. Функция непрерывна для любой непрерывной функции , так что оператор (1) действительно переводит пространство непрерывных функций в себя. Его линейность очевидна. Можно доказать также, что он непрерывен.

Тот же оператор можно рассмотреть на множестве непрерывных функций С2[a,b] с нормой , где он также непрерывен.

4. Один из важнейших для анализа примеров линейных операторов - оператор дифференцирования. Его можно рассматривать в пространстве C[a,b] : Df(t) = .Этот оператор D определен не на всем пространстве непрерывных функций, а лишь на линейном многообразии функций, имеющих непрерывную производную. Оператор D линеен, но не непрерывен. Это видно, например, из того, что последовательность сходится к 0 ( в метрике С[a,b]), а последовательность не сходится.

Оператор дифференцирования можно рассматривать как оператор, действующий из пространства D1 непрерывно дифференцируемых функций на [a,b] с нормой в пространство С[a,b]. В этом случае оператор D линеен и непрерывен и отображает все D1 на все С[a,b].

Рассмотрение оператора дифференцирования как оператора, действующего из D1 в С[a,b], не вполне удобно, так как, хотя при этом мы и получаем непрерывный оператор, определенный на всем пространстве, но не к любой функции из D1 можно применять этот оператор дважды. Удобнее рассматривать оператор дифференцирования в еще более узком пространстве, чем D1 , а именно в пространстве бесконечно дифференцируемых функций на отрезке [a; b], в котором топология задается счетной системой норм . Оператор дифференцирования переводит все это пространство в себя, и, как можно проверить, он непрерывен на этом пространстве.

2. Ограниченность и норма линейного оператора

Определение 2. Линейный оператор, действующий из Е в Е1, называется ограниченным, если он определен на всем Е и каждое ограниченное множество переводит снова в ограниченное. Между непрерывностью и ограниченностью линейного оператора существует тесная связь, т.е. справедливы следующие утверждения:

Теорема 1. Для того, чтобы линейный оператор был непрерывным, необходимо и достаточно, чтобы он был ограничен.

1. Пусть оператор А неограничен. Тогда существует МЕ - ограниченное множество, такое, что множество АМЕ1 не ограничено. С...

Другие файлы:

Самосопряженные расширения симметрических операторов в гильбертовом пространстве
Определение оператора в гильбертовом пространстве. Индексы дефекта симметрического оператора. Преобразование Кэли и формулы Неймана. Формула Крейна дл...

Гармонический анализ операторов в гильбертовом пространстве
Книга венгерского академика Белы Секефальви-Надя (хорошо знакомого нашему читателю по ставшим уже классическими „Лекциям по функциональному анализу")...

*-Алгебры и их применение
Основные понятия и определения. * - алгебры. Представления. Тензорные произведения. Задача о двух ортопроекторах. Два ортопроектора в унитарном простр...

Математическая теория рассеяния. Общая теория
В пособии систематически излагается современная математическая тeopия рассеяния. Изложение начинается «с нуля» и доводится до уровня последих работ по...

Граничные задачи для дифференциально-операторных уравнений
В книге излагается спектральная теория граничных задач для дифференциальных уравнений второго порядка, коэффициентами которых служат неограниченные о...