Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Химия

Электрофильное замещение в ароматических системах

Тип: реферат
Категория: Химия
Скачать
Купить
Основные механизмы замещения протона в ароматической молекуле на электрофильный реагент. Синхронный процесс изменения заряда на субстрате в процессе реакции. Нитрование, галогенирование, сульфирование. Алкилирование и ацилирование по Фриделю-Крафтсу.
Краткое сожержание материала:

Размещено на

Размещено на

Введение

Реакции электрофильного замещения - реакции замещения, в которых атаку осуществляет электрофил (частица, имеющая дефицит электронов), а при образовании новой связи частица отщепляется без своей электронной пары (реакции SЕ-типа).

Общий вид реакции

Электрофильные агенты

Электрофильные агенты условно могут быть разделены на 3 группы:

1. Сильные электрофилы:

2. NO2+(Ион нитрония); комплексы Cl2 или Br2 с различными кислотами Льюиса (FeCl3, AlBr3, AlCl3, SbCl5 и т.д.); H2OCl + , H2OBr + , RSO2+ , HSO3+ , H2S2O7 .

3. Электрофилы средней силы:

Комплексы алкилгалогенидов или ацилгалогенидов с кислотами Льюиса (RCl. AlCl3,

RCOCl. AlCl3 и др.); комплексы спиртов с сильными кислотами Льюиса и Бренстеда (ROH. BF3, ROH. H3PO4, ROH. HF).

4. Слабые электрофилы:

Катионы диазония, иминия CH2=N+ H2, нитрозония NO+(нитрозоил-катион); оксид углерода (IV) СО2.

Сильные электрофилы взаимодействуют с соединениями ряда бензола, содержащими как электронодонорные, так и практически любые электроноакцепторные заместители. Электрофилы второй группы реагируют с бензолом и его производными, содержащими электронодонорные (активирующие) заместители или атомы галогенов, но обычно не реагируют с производными бензола, содержащими сильные дезактивирующие электроноакцепторные заместители (NO2, SO3H, COR,CN и др.). Наконец, слабые электрофилы взаимодействуют только с производными бензола, содержащими очень сильные электронодонорные заместители (+М)-типа (OH, OR, NH2, NR2, O- и др.). [1]

Типы механизмов

Можно представить два возможных механизма замещения протона в ароматической молекуле на электрофильный реагент.

1. Отщепление протона может происходить одновременно с образованием новой связи с электрофильным реагентом Е, и рекакция в этом случае будет идти в одну стадию:

Для синхронного процесса изменение заряда на субстрате в процессе реакции должно быть сравнительно невелико. Кроме того, так как связь С--Н разрывается на скоростьопределяющей стадии реакции, можно ожидать, что при синхронном механизме реакция должна сопровождаться значительным кинетическим изотопным эффектом водорода.

2.Первоначально происходит присоединение электрофильного агента к р-системе ароматического ядра, образуется мало-стабильный интермеднат. Далее происходит отщепление протона от образовавшегося катиона под действием основания, в качестве которого может выступать молекула растворителя:

Реакции, идущие по этому механизму, должны характеризоваться высокой чувствительностью скорости к электронным эффектам заместителей, так как промежуточный интермедиат является катионом. Кроме того, если скоростьопределяющей стадией является первая, в которой не происходит нарушения связи С--Н, реакция не должна сопровождаться значительным кинетическим изотопным эффектом.

При взаимодействии ароматических соединений с электрофильными реагентами может происходить образование двух типов комплексов, которые могут быть интермедиатами в реакциях электрофильного замещения. Если электрофильный агент не разрушает существенным образом электронную р-систему ароматического ядра, образуются р-комплексы.

Существование р-комплексов подтверждается данными УФ-спектроскопии, изменениями в растворимости, давлении пара, температурах замерзания. Образование р-комплексов доказано, например, для взаимодействия ароматических углеводородов с хлороводородом или ионом Ag+:

Так как электронное строение ароматического кольца меняется незначительно (можно провести аналогию между этими комплексами и комплексами с переносом заряда), при образовании р-комплексов не происходит существенных изменений в спектрах, не наблюдается увеличения электрической проводимости. Влияние электронных эффектов заместителей в ароматическом кольце на стабильность р-комплексов сравнительно невелико, так как перенос заряда в р-комплексах мал.

При растворении ароматических углеводородов в жидком фтороводороде происходит протонирование молекулы ароматического углеводорода с образованием аренониевого иона, и получаются комплексы другого типа -- д-комплексы. [2]

Устойчивость д-комплексов (аренониевых ионов), в отличие от устойчивости -комплексов, очень сильно зависит от числа и природы заместителей в бензольном кольце. [1].

Образованию д-комплексов способствует стабилизация противоиона за счет взаимодействия с фторидом бора(Ш) или другими кислотами Льюиса:

В присутствии кислот Льюиса д-комплексы образуются и с хлороводородом. [2]

Промежуточный д-комплекс имеет несколько резонансных структур и весьма напоминает «супераллил-катион» тем, что положительный заряд в нем распределяется по трем из пяти доступных р-орбиталей. Эта система включает два одинаковых орто-углеродных атома по отношению к sp3-гибридизоваиному атому углерода и один пара-углеродный атом по отношению к этому же атому. Два эквивалентных мета-положения кольца не несут формального заряда, но они, несомненно, имеют слегка электроположительный характер из-за соседних положительно заряженных атомов углерода:

[3]

При образовании д-комплексов происходит резкое увеличение электрической проводимости раствора.

Основным путем превращения аренониевых ионов в растворе является отрыв протона с регенерацией ароматической системы.

Поскольку при образовании аренонневого иона в ароматическом кольце локализуется целый положительный заряд, влияние электронных эффектов заместителей на относительную стабильность д-комплексов должно быть значительно больше, чем в случае р-комплексов.

Таким образом, можно ожидать, что реакция электрофильного замещения будет происходить через стадию образования сначала р-комплекса, а затем д-комплекса.[2]

Изомерные д-комплексы

В переходном состоянии, предшествующем образованию д-комплекса, между молекулой монозамещенного бензола С6Н5Х и положительно заряженным электрофилом Е+ заряд поделен между атакующим электрофилом и бензольным кольцом. Если переходное состояние «раннее» (похожее на реагенты), то заряд в бензольном кольце невелик и в основном локализован на электрофиле, а если переходное состояние «позднее» (похожее на аренониевый ион), то заряд в основном локализован на атомах углерода бензольного кольца. Для реакций монозамещенных бензолов могут существовать четыре комплекса: орто-, мета-, пара- и ипсо- :

орто- мета- пара- ипсо-

В соответствии с этим могут быть четыре разных переходных состояния, энергия которых зависит от степени взаимодействия заместителя Х с положительным зарядом кольца. В «позднем» переходном состоянии полярный эффект заместителя Х должен быть выражен сильнее, чем в «раннем» переходном состоянии, но качественно влияние одного и того же заместителя должно быть одинаковым.

Из орто-, мета- и пара-комплексов образуются продукты замещения водорода (путем отщепления протона), но из ипсо-комплекса может образоваться продукт замещения группы Х путем отщепления катиона Х+. ипсо-Замещение характерно для металлоорганических соединений; как правило, в них металл замещается легче протона: [4]

Классификация заместителей

В настоящее время заместители делят на три группы с учетом их активирующего или дезактивирующего влияния, а также ориентации замещения в бензольном кольце.

1. Активирующие орто-пара-ориентирующие группы. К ним относятся: NH2, NHR, NR2, NHAc, OH, OR, OAc, Alk и др.

2. Дезактивирующие орто-пара-ориентирующие группы. Это галогены F, Cl, Br и I.

Эти две группы (1 и 2) заместителей называют ориентантами I-го рода.

3. Дезактивирующие мета-ориентирующие группы. Эту группу составляют NO2, NO, SO3H, SO2R, SOR, C(O)R, COOH, COOR, CN, NR3+ ,CCl3 и др. Это ориентанты II-го рода.

Естественно, что существуют и группировки атомов промежуточного характера, обусловливающие смешанную ориентацию. К ним, например, относятся: CH2NO, CH2COCH3, CH2F, CHCl2, CH2NO2, CH2CH2NO2, CH2CH2NR3+, CH2PR3+, CH2SR2+ и др.

Примеры влияния ориентантов: [1]

Основные реакции электрофильного ароматического замещения

Нитрование.

Одной из наиболее широко исследованных реакций замещения в ароматических системах является нитрование.

Различные арены нитруются в самых разнообразных условиях. Наиболее часто в качестве нитрующего агента используют азотную кислоту в смеси с серной кислотой или азотную кислоту в органических растворителях: уксусной кислоте, нитрометане и т.д.

Незамещенный бензол обычно нитруют смесью концентрированных азотной и серной кислот при 45-50оС. Этот реагент называется нитрующей смесью.

Установлено, что в электрофильном нитровании, независимо от природы нитрующего агента, активным электрофилом является ион нитрония NO2+ . В избытке концентрированной серной кислоты происходит количественное превращение азотной кислоты в гидросульфат нитрония:

При разбавлении серной кислоты водой концентрация иона NO2+ уменьшается и вместе с этим резко падает и скорость нитрования. Однако очень реакционноспособные арены нитруются даже в таких условиях, когда обнаружить ион NO2+ в растворе какими-либо физическ...

Другие файлы:

Получение м-нитробензойной кислоты из толуола
Восстановление нитробензойной кислоты. Окисление толуола, нитрование бензойной кислоты. Действие галогенирующих агентов. Электрофильное замещение, обр...

Производство и свойства ароматических аминов
Методы получения ароматических аминов: первичные, вторичные, третичные. Физические и химические свойства ароматических аминов. Галогенирование анилина...

Энциклопедия ароматических масел
Справочное пособие по использованию ароматических масел в ароматерапии, траволечении, а также с целью укрепления душевного и физического здоровья....

Методические рекомендации по организации и проведению конкурса на замещение вакантной должности государственной гражданской службы Вологодской области (могут быть использованы и для проведения конкурса на замещение вакантной должности муниципальной с

Электрофильное ароматическое замещение
Эти реакции характерны не только для самого бензола, но и вообще для бензельного кольца, где бы оно ни находилось, а также для других ароматических ци...