Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Химия

Производство и свойства ароматических аминов

Тип: реферат
Категория: Химия
Скачать
Купить
Методы получения ароматических аминов: первичные, вторичные, третичные. Физические и химические свойства ароматических аминов. Галогенирование анилина свободными галогенами. Гидрирование анилина в присутствии никеля. Отдельные представители аминов.
Краткое сожержание материала:

Размещено на

Реферат по теме:

Производство и свойства ароматических аминов

ВВЕДЕНИЕ

Ароматические амины являются производными аммиака. Ароматические амины относятся к классу химических соединений, получаемых из ароматических углеводородов, типа бензола, толуола, нафталина, антрацена и дифенила, заменой, по крайней мере, одного атома водорода аминогруппой -NH2. Соединения со свободной аминогруппой относятся к первичным аминам. Когда один из атомов водорода группы -NH2 замещается алкиловой или ариловой группой, получившееся в результате соединение называется вторичным амином; при замене обоих атомов водорода получается третичный амин. Углеводород может иметь одну, две, реже три аминогруппы. Таким образом можно получить большое разнообразие соединений. И действительно, ароматические амины составляют обширный класс химических веществ, представляющих большую техническую и промышленную ценность.

Ароматические амины используются, прежде всего, как промежуточные звенья в производстве красителей и пигментов. Самым простым ароматическим амином является анилин, состоящий из одной группы -NH2, присоединенной к бензольному ядру; его производные нашли наиболее широкое применение в промышленности. К другим распространенным соединениям с одним кольцом относятся диметиланилин и диэтиланилин, хлороанилины, нитроанилины, толуидины, хлоротолуидины, фенилендиамины и ацетанилид.

Цель данной курсовой работы: рассмотреть ароматические амины, их главные химические и физические свойства, производство и применение в промышленности.

1. МЕТОДЫ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ АМИНОВ

1.1 Первичные амины

Общая формула Ar-NH2. Например: C6H5NH2 анилин (фениламин), CH3-C6H4-NH2 о-, м-, и п-аминотолуолы или толуидины.

Методы, применяемые для синтеза ароматических аминов, включают восстановление нитросоединений, реакции замещения в ряду ароматических галогенпроизводных и гидроксисоединений, перегруппировки, и, реже, прямое аминирование.

1) Обычным способом получения первичных ароматических аминов является восстановление нитросоединений:

Восстановление можно вести в кислых или основных условиях или прямым воздействием водорода в присутствии катализатора. Выбор восстанавливающего агента в значительной степени определяется природой других групп, присутствующих в молекуле. Как правило, предпочитают восстанавливающие агенты кислой природы, основные агенты обычно стараются не применять. В качестве восстановителей могут быть использованы железо и соляная или серная кислоты, олово и соляная кислота, сероводород и сульфиды щелочных металлов, гидросульфиты и, наконец, восстановление можно вести каталитическими или электрохимическими методами.

2) В последнее время ароматические амины получают из галогенпроизводных ароматического ряда и аммиака. Например, анилин можно получить при нагревании хлорбензола с водным аммиаком в присутствии оксида меди (I) при 200 ?С под давлением:

Реакция проходит с промежуточным образованием дегидробензола.

3) Прямое аминирование бензольного кольца аммиаком протекает в крайне жестких условиях на сложных катализаторах (соли молибдена, вольфрама или хрома и оксиды никеля и меди):

4) Ароматические амины также можно получить из кислот через амиды реакцией Гофмана:

1.2 Вторичные амины

Общая формула чисто ароматических вторичных аминов ArNH, жирноароматических Ar-NH-Alk, например дифениламин (С6H5)2NH, метилфениламин (метиланилин) C6H5-NH-CH3.

1) Чисто ароматические вторичные амины получают нагреванием ароматических аминов с их солями:

Ar-NH2 + Ar-NH2•HCl > Ar2NH + NH4Cl

2) Вторичные жирноароматические амины получают обычными методами алкилирования первичных ароматических аминов с помощью галогенопроизводных и спиртов.

В промышленности алкилирование ведется обычно спиртами в присутствии кислот, причем порлучается смесь солей вторичного и третичного аминов:

С6H5-NH2 • HCl + CH3OH > C6H5NH-CH3 • HCl +H20;

C6H5-NHCH3 • HCl + CH3OH > C6H5N(CH3)2 • HCl + H20.

Вторичные жирноароматические амины (без примеси третичных) получают алкилированием ацильных производных аминов с последующим гидролизом, например по схеме:

3) Вторичные жирноароматические амины получают также гидрированием так называемых шиффовых оснований (азометинов):

4) N-Алкилирование. При действии на анилин алкилгалогенида образуется вторичный амин (в виде основания), который при дальнейшей реакции превращается в третичный амин. В качестве алкилирующих агентов могут быть использованы также алкилсульфонаты и сульфонаты.

Эта реакция лежит в основе промышленного способа получения N-алкил и N,N-диалкиланилинов: анилин и его сульфат или гидрохлорид нагревают нужным спиртом под давлением при температурах до 170-180 ?С. В качестве катализатора используют порошок меди или хлорид кальция. Обычно выбирают условия, позволяющие получить преимущественно вторичный или третичный амин, которые очищают перегонкой.

1.3 Третичные амины

Трифениламин (C6H5)3N (чисто ароматический амин), дифенилметиламин (C6H5)2NCH3, диметиланилин C6H5N(CH3)2 (жирноароматические амины).

Третичные ароматические амины обоих видов получают алкилированием или арилированием первичных или вторичных аминов:

Более трудно доступные третичные чисто ароматические амины получают нагреванием вторичных аминов с арилиодидами в присутствии медного порошка:

2. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Ароматические амины - жидкости или твердые вещества с характерным неприятным запахом. Сильно токсичны. В воде растворяются мало. Накопление аминогрупп ведет к увеличению растворимости.

Ароматическием амины вступают в химические превращения с участием аминогруппы или ароматического ядра.

Ароматические амины имеют менее выраженный основный характер, чем алифатические. Так, Кb метиламина составляет 4,5·10-4, тогда как для анилина 3,8•10-10.

Уменьшение основности анилина по сравнению с алифатическими аминами объясняется взаимодействием неподеленной пары электронов азота с электронами ароматического ядра - их сопряжением:

Сопряжение уменьшает способность неподеленной электронной пары присоединять протон.

Присутствие электроноакцепторных групп в ядре уменьшает основность. Например, константа основности для о-, м- и п-нитроанилинов составляет соответственно 1•10-14, 4•10-12 и 1•10-12. Ведение второго ароматического ядра также заметно уменьшает основность (для дифениламина ~7,6•10-14). Дифениламин образует сильно гидролизующиеся в растворах соли только с сильными кислотами. Трифениламин основными свойствами практически не обладает.

С другой стороны, введение алкильных групп (электронодонорные группы) увеличивает основность (Кb N-метиланилина и N,N-диметиланилина равны соответственно 7,1•10-10 и 1,1•10-9).

Введение второго ароматического ядра сильно уменьшает основность. Константа основности дифениламина 7,6•10-14. Дифениламин образует сильно гидролизующиеся в растворах соли только с сильными кислотами. Трифениламин основными свойствами практически не обладает. Таким образом, фенильная группа сильно снижает основные свойства амино-группы. Ароматические полиамины по основным свойствам мало отличаются от анилина.

1) Реакции с азотистой кислотой. Реакции, происходящие при действии азотистой кислоты на первичные, вторичные и третичные амины, различны. Первичные ароматические амины образуют соли диазония. Из вторичных ароматических аминов получают N-нитрозамины, в то время как третичные амины нитрозируются в ядро с образованием C-нитрозосоединений.

Третичные ароматические амины на холоду дают с азотистой кислотой п-нитрозосоединения. Третичные амины жирного ряда с азотистой кислотой в этих условиях дают соли:

Если п-положение занято, нитрозогруппа вступает в о-положение.

п-Нитрозодиалкиланилины легко расщепляются щелочами на нитрозофенол и вторичный амин. Эта реакция является удобным способом получения индивидуальных вторичных аминов жирного ряда:

2) Первичные и вторичные ароматические амины способны замещать водород аминогруппы алкилами. Эта реакция является способом получения вторичных и третичных аминов:

3) При действии ацилирующих средств водородные атомы первичных и вторичных аминов замещаются ацильными остатками. Так, анилин переходит в ацетанилид при действии уксусного ангидрида или при нагревании с уксусной кислотой:

Ацильные производные аминов - кристаллические вещества с достаточно высокими и четкими температурами плавления. Они являются амидами кислот, не обладающими основными свойствами. Ациламиды устойчивы к окислителям и поэтому используются в качестве промежуточных веществ при окислении аминов.

4) При слабом нагревании ароматических первичных аминов с ароматическими альдегидами легко получаются шиффовы основания или азометины:

При действии разбавленных кислот эти основания подвергаются расщеплению на альдегид и амин:...

Другие файлы:

Промышленный синтез ароматических нитросоединений и аминов
В книге рассматриваются современные промышленные процессы нитровании и восстановлении ароматических соединений (производство нитросоединений, аминов и...

Ацилирование и алкилирование аминов
Номенклатура, классификация, химические свойства аминов. Основные и кислотные свойства, реакции ацилирования и алкилирования. Взаимодействие аминов с...

Синтез, свойства и применение дифениламина. Амины и их свойства
Применение дифениламина. Амины. Ацилирование и алкилирование аминов. Образование производных мочевины. Алкилирование первичных и вторичных аминов. Рас...

Ацилирование и алкилирование аминов
Основные, химические и кислотные свойства аминов. Взаимодействие их с азотистой кислотой. Ацилирование и алкилирование по Фриделю-Крафтсу. Восстановле...

Амины. Аминокислоты. Белки
Номенклатура аминов, их физические и химические свойства. Промышленные и лабораторные способы получения аминов. Классификация аминокислот и белковых в...