Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Физика и энергетика

Исследование влияния гидродинамически-активных добавок на характеристики течений со свободными границами

Тип: контрольная работа
Категория: Физика и энергетика
Скачать
Купить
Введение в турбулентный поток жидкости примесей. Механическая деструкция макромолекул при длительном пребывании в турбулентном потоке. Структура турбулентных течений с добавками. Влияние добавок полимеров и пав на течения со свободными границами.
Краткое сожержание материала:

Размещено на

Исследование влияния гидродинамически-активных добавок на характеристики течений со свободными границами

1. Современное состояние вопроса

Открытие и последовательное осознание того факта, что введение в турбулентный поток жидкости соответствующим образом подобранных добавок приводит к существенному снижению турбулентного трения, относится к работам Б. Томса /8/ и К. Миселса /9/. Эксперименты эти были выполнены в 1945-1946 годах, однако систематическое исследование указанного явления начались лишь в 1954-1959 годах. Обусловлено это было обнаружением высокоэффективных водорастворимых добавок и, в связи с этим, появлением возможности практического использования эффекта снижения сопротивления трения. Интенсивное развитие этого вопроса отражается в многочисленных публикациях теоретического и прикладного плана. В частности, этой проблеме посвящено уже свыше 1000 публикаций. Подробное изложение их является предметом ряда обзорных работ /1ч7; 10ч14/.

Хотя в большинстве случаев в качестве снижающих трение полимерных добавок исследователи используют гуаровую смолу, полиоксиэтилен, полиакриламид и натриевую соль карбоксиметицеллюлозы, было обнаружено, что многие другие высокополимеры с соответствующим растворителем обладают способностью снижать турбулентное трение. Некоторые пары полимер - растворитель, дающие снижение сопротивления приведены в работе Хойта /12/, наиболее полно этот вопрос освящен в работах /2, 14/. Из анализа указанной литературы с полной уверенностью можно считать правильными выводы Хойта, что любые макромолекулярные вещества достаточно большого молекулярного веса (50000 и более) главным образом с линейной структурой молекул будут снижать сопротивление в любой жидкости, в которой они растворяются.

Однако широкому применению полимеров препятствует ряд обнаруженных при их изучении недостатков: механическая деструкция макромолекул при длительном пребывании в турбулентном потоке, невысокая эффективность в трубах большого диаметра, низкая скорость растворения.

Существенное воздействие на пристенную турбулентность оказывают и добавки другой природы: мицеллообразующие поверхностно - активные вещества (ПАВ). Своим названием ПАВ обязаны способности снижать поверхностное и межфазное натяжение из-за адсорбции и ориентации молекул у поверхности раздела. Снижение поверхностного натяжения, как правило, обусловлено дифильностью строения молекул ПАВ, обладающих полярной группой и неполярной углеводородным радикалом.

Впервые сообщение о способности ПАВ снижать гидродинамическое сопротивление (было обнаружено аномальное трение напалма при движении в огнеметной установке) приводится в работах /9/. Способ снижения сопротивления с использование малоподобных веществ был запатентован еще в 1949 году, однако изучение особенностей течения жидкостей с добавками этого класса стало производиться гораздо позже.

Сэвинс /15/ первым обнаружил важное свойство растворов ПАВ, обладающих сниженным сопротивлением - устойчивость к механической деструкции. В работе /15/ приведены результаты исследований, когда свойство снижать сопротивление в растворе ПАВ сохранялось после 88 часов перекачивания его насосом. Было также показано, что при больших сдвиговых напряжениях наблюдается исчезновение эффекта снижения сопротивления и его восстановление при уменьшении напряжений.

К первым публикациям по использованию мицеллообразующих поверхностно - активных веществ для уменьшения турбулентного трения жидкостей у нас в стране следует отнести ряд работ, выполненных под руководством И.Л. Повха и А.Б. Ступина. В имеющихся к настоящему времени сравнительно небольшом количестве работ, посвященных изучению особенностей снижения турбулентного сопротивления добавками ПАВ освещен очень узкий круг вопросов, связанных с интегральными характеристиками потоков и практически отсутствуют сведения об особенностях турбулентности в растворах ПАВ.

С целью расширения класса добавок, снижающих турбулентное трение, изучения особенностей их влияния на поток жидкости, ряд авторов использовали различные специфические добавки: асбестовые, древесные, натуральные и синтетические волокна, глинистые частицы, продукты жизнедеятельности морских организмов и водорослей и т.п. /3, 6, 14/. Однако исследования эти немногочисленны и их данные в ряде случаев противоречивы. Перспективы практического использования указанных добавок весьма проблематичны.

Остановимся на некоторых, наиболее общих особенностях воздействия на турбулентность добавок полимеров и поверхностно - активных веществ.

1.1 Структура турбулентных течений с добавками

В настоящее время не существует единой точки зрения относительно механизма снижения турбулентного трения добавками. Трудности в обосновании гипотез связаны со сложностью изучаемого явления, которое с позиций классической гидродинамики обладает рядом аномалий, а также с отсутствием представительной теории неоднородной пристенной турбулентности.

Для понимания физической природы эффекта снижения сопротивления и построения рациональных схем расчета турбулентных течений с добавками необходимо знать особенности их влияния на структуру пристенной турбулентности. Изучение характерных свойств турбулентной структуры важно также с точки зрения оптимального использования добавок в технических приложениях.

К настоящему времени достаточно полно изучено влияние добавок полимеров на распределение профилей скорости и турбулентные характеристики. Информация о зарубежных работах этого направления содержится в обзорах /10ч14/.

Необходимо отметить, что первые опыты по исследованию турбулентных течений с полимерными добавками были выполнены с помощью трубок Пито и термоанемометра. Однако последующие эксперименты вскрыли определенные недостатки этих приборов. В частности, в растворах полимеров трубки Пито небольшого диаметра (менее 2,5 - 3 мм) дают заниженные показания, что ограничивает их возможности при проведении измерений в пристенной области /12/. При термоанемометрических измерениях возникают аномальные сигналы./12/, цилиндрические и клиновидные датчики в полимерных растворах имеют очень низкие значения коэффициентов теплоотдачи /12/. Кроме того, в процессе эксперимента наблюдался временный ход показаний термоанемометра /12/.

Отмеченные недостатки трубок Пито и термоанемометра ограничивают их применение для измерения осредненных и пульсационных скоростей в потоках с добавками. Данное обстоятельство стимулировал работы по разработке и применению для исследования структуры течений с добавками бесконтактных методов измерения гидродинамических величин. Наиболее перспективными из них оказались метод стробоскопической визуализации потока и ОДИС - метод (лазерная доплеровскяа анемометрия), с помощью которых были измерены профили средней скорости и турбулентные характеристики в растворах полимеров по всему сечению потока, включая область вязкого подслоя и переходную зону.

Профили средней скорости. Проведенные исследования показали, что добавки полимеров оказывают существенное влияние на пристенную турбулентность. Профили средней скорости в растворах полимеров значительно трансформируются, относительные размеры пристенной области, включающей вязкий подслой и переходную зону, значительно возрастают. В работах /10,11/ введено понятие о трех зонах профиля скорости в снижающем трении полимерном потоке. Это ньютоновский вязкий подслой с линейным профилем скорости, переходная область (зона взаимодействия добавок с потоком или «упругий» подслой), которая идет по прямой наибольшего или максимально достижимого снижения сопротивления и внешнюю область с ньютоновской постоянной Кармана ?= 0,4 (турбулентное ядро течения).

При достаточно высоких числах Рейнольдса и малом снижении сопротивления в турбулентном ядре потока сохраняется логарифмическое распределение скорости с увеличенным значением параметра (по сравнению со случаем турбулентного течения обычной ньютоновской жидкости, когда В = 5,5)

U+ = 2.5 ln y+ +B

U+ = ; U* = , y+ = ,

где U - локальная осредненная скорость, у - расстояние по нормали от стенки. С увеличением величины эффекта снижения сопротивления имеет место прогрессивное сжатие области турбулентного ядра течения, ее внутренняя граница смещается по направлению к оси трубы, пока не произойдет полное исчезновение этой области при максимальном уменьшении сопротивления. Это означает соответствующее увеличение протяженности упругого подслоя, выражение для которого при максимальном снижении сопротивления получено П. Вирком /10/ в виде:

U+ = 11.7 ln y+ - 17.0

Аналогичное влияние добавок ПАВ на профиль скорости отмечено в имеющихся к настоящему времени ограниченном количестве работ, в основном советских авторов /6, 7/.

Турбулентные характеристики. Информация о структуре турбулентности в растворах с добавками, имеющаяся только применительно к режиму со снижением сопротивления, свидетельствует о существовании трех радиальных зон, аналогичных (но не тождественных) зонам, наблюдаемым на профилях средней скорости: вязкий подслой, упругий подслой и турбулентное ядро течения.

Турбулентное течение ньютоновской жидкости в вязком подслое обладает квазирегулярной пространственно-временной структурой. Существуют периоды спокойного, почти ламинарного...

Другие файлы:

Гидродинамика течений со свободными границами
В книге рассмотрены такие основные параграфы: основные свойства свободных границ; некоторые общие свойства потенциальных течений со свободными граница...

Качество биологически активных добавок
Определение биологически активных добавок, их отличие от лекарств, характеристика основных видов. Гигиеническая экспертиза биологически активных добав...

Биологически активные добавки
Определение и характеристики биологически активных добавок (БАД) искусственного происхождения. Области применения лекарств, БАД и пищи, их сравнительн...

Неорганические и органические связующие добавки
Применение бентонитовых глин при производстве железорудных окатышей, входящие в их состав минералы. Исследование влияния органических добавок на свойс...

NSP от А до Я. Каталог биологически активных добавок
Каталог биологически активных добавок компании Nature's Sunshine Products, Inc. Издательство не присвоило книге официальный ISBN. Для добавления книги...