Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Коммуникации и связь

Сложный инвертор

Тип: курсовая работа
Категория: Коммуникации и связь
Скачать
Купить
Описание сложного инвертора. Расчет логического элемента ТТЛ (транзисторно-транзисторной логики) 3И-НЕ, обеспечивающего работу базовой схемы инвертора. Выбор транзисторов, расчет токов и сопротивления на них. Построение входных и выходных характеристик.
Краткое сожержание материала:

Размещено на

11

Размещено на

Министерство науки и образования РФ

Новосибирский Государственный Технический Университет

Кафедра ПЭ

Курсовая работа по дисциплине «Микроэлектроника»

«Сложный инвертор»

Новосибирск 2011

1. Задание к курсовому проекту по дисциплине «Микроэлектроника»

Рассчитать элементы базовой схемы (рис. 1) логического элемента ТТЛ (транзисторно-транзисторная логика) 3И-НЕ, обеспечивающие ее работу. Коэффициент разветвления принять равным 15. Значение принять равным 10 для всех транзисторов в схеме. Построить характеристику сложного инвертора.

Рисунок 1 - Сложный инвертор

2. Описание сложного инвертора

При подаче высокого уровня напряжения на вход транзистора VT1, переходы Э-Б транзистора VT1смещены в обратном направлении и ток через переход К-Б проходит в базу транзистора VT2, далее ток проходит в базу транзистора VT4, что приводит транзисторы VT2 и VT4 к насыщению. МЭТ (многоэмитторный транзистор) работает в инверсном активном режиме, т.к. все переходы Э-Б смещены в обратном направлении, а переход К-Б смещен в прямом направлении. Транзистор VT3 закрывается, т.к. напряжение между коллекторами транзисторов VT2 и VT4 становится ниже, чем суммарный порог отпирания транзистора VT3 и смещающего диода VD. Диод предназначен для надежного запирания транзистора VT3 при насыщении транзисторов VT2 и VT4. В результате выходное напряжение UкVT4 соответствует низкому уровню напряжения. Когда напряжение хотя бы на одном из выходов равно низкому уровню напряжения, то соответствующий переход Э-Б МЭТ смещается в прямом направлении и весь ток, протекающий через сопротивление R1, поступает во входящую цепь схемы и МЭТ входит в насыщение, коллекторный ток МЭТ уменьшается. При этом напряжение на базе транзистора VT2 составляет сотые доли вольта, поэтому транзисторы VT2 и VT4 закрыты.

3. Исходные данные

Еп=5В,

=30,

Краз=15,

Uвх0=1,5В,

Uвх1=2,5В,

Uвых0=0,1В,

Uвых1=3,8В,

Iвых=20мА.

Константы, используемые в дальнейшем расчете схемы:

4. Расчет схемы

1. Рассчитаем напряжение UR4:

Напряжение на диоде VD: UD=0,2В.

Определим сопротивление R4:

Рассчитаем мощность этого резистора:

Выбираем резистор МЛТ-0,125, номиналом 20Ом;

Транзистор VT3 открыт, транзисторы VT2 и VT4 закрыты (рис. 2).

Рисунок 2

2. Рассчитаем напряжение UR2:

Определим сопротивление R2:

Рассчитаем ток на резисторе R2:

Рассчитаем мощность этого резистора:

Выбираем резистор МЛТ-0,125, номиналом 220Ом;

сложный инвертор транзистор

3. Рассчитаем токи на транзисторе VT4 и сопротивление R3 (рис.3):

Рисунок 3

Рассчитаем ток базы IБVT4:

Рассчитаем ток на резисторе R3:

Определим сопротивление R3:

Рассчитаем мощность этого резистора:

Выбираем резистор МЛТ-0,125, номиналом 36Ом;

4. Рассчитаем токи на транзисторе VT2:

Рассчитаем ток эмиттера VT2:

Рассчитаем ток базы VT2:

5. Рассчитаем токи на транзисторе VT1 и сопротивление R1 (рис.4):

Рисунок 4

Рассчитаем ток базы транзистора VT1:

Определим сопротивление R1:

Рассчитаем мощность этого резистора:

Выбираем транзистор МЛТ-0,125, номиналом 2кОм;

5. Расчет и построение выходной характеристики (рис.5):

Рисунок 5

Условие перехода из активного режима в режим насыщения:

Построим выходную характеристику:

Выходная характеристика.

6. Расчет и построение входной характеристики (рис.6):

Рисунок 6

Построим входную характеристику:

Входная характеристика.

7. Выбор транзистора:

Выбираем транзистор малой мощности, таким образом, чтобы предельный ток коллектора превышал заданного выходного тока, подходит транзистор КТ315Ж.

Его номинальные параметры:

Тип элемента

КТ315Ж

50

60

100

393

10…220

1

КТ315Ж - Транзистор высокочастотный, маломощный, n-p-n.

Список используемой литературы

1 Горюнов Н.Н. Справочник. Полупроводниковые приборы: транзисторы. Москва. Энергоатомиздат. 1985. 904с.;

2 Нечаев И.А. Конструкции на логических элементах цифровых микросхем. Москва. Радио и связь. 1992. 120с.;

3 Опадчий Ю.Ф., Глудкин О.П., Гуров А.И. Аналоговая и цифровая электроника. Учебник. 2005. 768с.;

4 Преснухин Л.Н., Воробьев Н.В., Шишкевич А.А. Расчет элементов цифровых устройств. Москва. Высшая школа. 1991. 526с.;

5 Подъяков Е.А., Орлик В.В., Брованов С.В. Электронные цепи и микросхемотехника. Часть 1-5. Новосибирск. 2003. 196с.;

6 Шило В.Л. Популярные цифровые микросхемы. Москва. Металлургия. 1988. 352с.;

7 Янсен Й. Курс цифровой электроники. Том 1. Основы цифровой электроники на ИС. Москва. Мир. 1987. 334с.

Размещено на Allbest.ru

...
Другие файлы:

Сварочный инвертор - это просто
Пособие как самостоятельно собрать и настроить мощный сварочный инвертор....

Сварочный инвертор - это просто, 2!
Эта книга является логическим продожением и дополнением первой книги - "Сварочный инвертор - это просто." В ней Вы найдете ответы на большинство вопро...

Что такое сварочный инвертор и как он работает

Расчет импульсного блока питания
Инвертором называется прибор, схема, или система, которое создаёт переменное напряжение при подключении источника постоянного напряжения. Существует д...

Разработка преобразователя частоты для управления асинхронного двигателя
Разработка и моделирование устройства, позволяющего с заданной точностью формировать на выходе синусоидальное напряжение 22/38-220/380 В и частотой 5-...