Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Экономико-математическое моделирование

Методы определения параметров и характеристик случайных процессов

Тип: контрольная работа
Категория: Экономико-математическое моделирование
Скачать
Купить
Характеристика метода Монте-Карло. Его преимущество и недостатки, области применения. Решение задач по оптимизации использования ресурсов, управлению запасами и системе массового обслуживания с помощью средств аналитического и имитационного моделирования.
Краткое сожержание материала:

Размещено на

Размещено на

Содержание

Введение

I. Метод Монте-Карло

1. Общая характеристика метода Монте-Карло

2. Примеры решения задач с помощью метода Монте-Карло

II. Задача оптимизации

III. Задача управления запасами

IV. Задача СМО с помощью аналитического моделирования

V. Задача СМО с помощью имитационного моделирования

Заключение

Список литературы

Введение

Метод Монте-Карло можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений.

Возникновение идеи использования случайных явлений в области приближённых вычислений принято относить к 1878 году, когда появилась работа Холла об определении числа p с помощью случайных бросаний иглы на разграфлённую параллельными линиями бумагу. Существо дела заключается в том, чтобы экспериментально воспроизвести событие, вероятность которого выражается через число p, и приближённо оценить эту вероятность. Отечественные работы по методу Монте-Карло появились в 1955-1956 годах. С того времени накопилась обширная библиография по методу Монте-Карло. Даже беглый просмотр названий работ позволяет сделать вывод о применимости метода Монте-Карло для решения прикладных задач из большого числа областей науки и техники. [3 c 126]

Первоначально метод Монте-Карло использовался главным образом для решения задач нейтронной физики, где традиционные численные методы оказались мало пригодными. Далее его влияние распространилось на широкий класс задач статистической физики, очень разных по своему содержанию.

Метод Монте-Карло оказал и продолжает оказывать существенное влияние на развитие методов вычислительной математики (например, развитие методов численного интегрирования) и при решении многих задач успешно сочетается с другими вычислительными методами и дополняет их. Его применение оправдано в первую очередь в тех задачах, которые допускают теоретико-вероятностное описание. Это объясняется как естественностью получения ответа с некоторой заданной вероятностью в задачах с вероятностным содержанием, так и существенным упрощением процедуры решения.[3 с 129]

I. Метод Монте-Карло

Различные методы и приборы для определения параметров и характеристик случайных процессов можно объединить в две группы. Первую группу составляют приборы для определения корреляционных функций (корреляторы), спектральных плотностей (спектрометры), математических ожиданий, дисперсий, законов распределения и прочих случайных процессов и величин.

Все приборы первой группы можно разделить на две подгруппы. Одни определяют характеристики записанных случайных сигналов за достаточно большое время, намного превышающее время реализации самого случайного процесса. Другие (они в последнее время вызывают наибольший интерес) позволяют получать характеристики случайного процесса оперативно, в такт с поступлением информации при натурных испытаниях новых систем управления, так как, пользуясь их показаниями, можно непосредственно изменять процесс управления и в ходе эксперимента наблюдать за результатами этих изменений.[4 с 754]

Вторая группа содержит методы и приборы, предназначенные для исследования случайных процессов и главным образом систем управления, в которых присутствуют случайные сигналы, на универсальных цифровых и аналоговых вычислительных машинах. Иногда для таких исследований приходится создавать специализированные вычислительные машины цифрового, аналогового или чаще всего аналого-цифрового (гибридного) типа, так как существующие типовые машины не приспособлены для решения некоторых задач.

Широко применяется на практике метод Монте-Карло (метод статических испытаний). Его основная идея чрезвычайно проста и заключается по существу в математическом моделировании на вычислительной машине тех случайных процессов и преобразований с ними, которые имеют место в реальной системе управления. Этот метод в основном реализуется на цифровых и, реже, на аналоговых вычислительных машинах.

Можно утверждать, что метод Монте-Карло остаётся чистым методом моделирования случайных процессов, чистым математическим экспериментом, в известном смысле лишённым ограничений, свойственным другим методам. Рассмотрим данный метод применительно к решению различных задач управления.

Общая характеристика метода Монте-Карло

Как уже указывалось, идея метода Монте-Карло (или метода статистического моделирования) очень проста и заключается в том, что в вычислительной машине создаётся процесс преобразования цифровых данных, аналогичный реальному процессу. Вероятностные характеристики обоих процессов (реального и смоделированного) совпадают с какой-то точностью.

Допустим, необходимо вычислить математическое ожидание случайной величины X, подчиняющейся некоторому закону распределения F(x). Для этого в машине реализуют датчик случайных чисел, имеющий данное распределение F(x), и по формуле, которую легко запрограммировать, определяют оценку математического ожидания:

Каждое значение случайной величины xi представляется в машине двоичным числом, которое поступает с выхода датчика случайных чисел на сумматор. Для статистического моделирования рассматриваемой задачи требуется N-кратное повторение решения.[5]

Различают две области применения метода Монте-Карло. Во-первых, для исследования на вычислительных машинах таких случайных явлений и процессов, как прохождение элементарных ядерных частиц (нейтронов, протонов и пр.) через вещество, системы массового обслуживания (телефонная сеть, система парикмахерских, система ПВО и пр.), надёжность сложных систем, в которых выход из строя элементов и устранения неисправностей являются случайными процессами, статистическое распознавание образов. Это - применение статистического моделирования к изучению так называемых вероятностных систем управления.

Этот метод широко применяется и для исследования дискретных систем управления, когда используются кибернетические модели в виде вероятностного графа (например, сетевое планирование с ?-распределением времени выполнением работ) или вероятностного автомата.

Вторая область применения метода Монте-Карло охватывает чисто детерминированные, закономерные задачи, например нахождение значений определённых одномерных и многомерных интегралов. Особенно проявляется преимущество этого метода по сравнению с другими численными методами в случае кратных интегралов.

При решении алгебраических уравнений методом Монте-Карло число операций пропорционально числу уравнений, а при их решении детерминированными численными методами это число пропорционально кубу числа уравнений. Такое же приблизительно преимущество сохраняется вообще при выполнении различных вычислений с матрицами и особенно в операции обращения матрицы. Основной идеей, которая используется при решении детерминированных задач методом Монте-Карло, является замена детерминированной задачи эквивалентной статистической задачей, к которой можно применять этот метод. Естественно, что при такой замене вместо точного решения задачи получается приближённое решение, погрешность которого уменьшается с увеличением числа испытаний.[5]

Эта идея используется в задачах дискретной оптимизации, которые возникают при управлении. Часто эти задачи сводятся к перебору большого числа вариантов, исчисляемого комбинаторными числами вида N=.

При обработке больших массивов информации и управлении сверхбольшими системами, которые насчитывают свыше 100 тыс. компонентов (например, видов работ, промышленных изделий и пр.), встаёт задача укрупнения или эталонизации, т.е. сведения сверхбольшого массива к 100-1000 раз меньшему массиву эталонов. Это можно выполнить с помощью вероятностной модели. Считается, что каждый эталон может реализоваться или материализоваться в виде конкретного представителя случайным образом с законом вероятности, определяемым относительной частотой появления этого представителя. Вместо исходной детерминированной системы вводится эквивалентная вероятностная модель, которая легче поддаётся расчёту. Можно построить несколько уровней, строя эталоны эталонов. Во всех этих вероятностных моделях с успехом применяется метод Монте-Карло. Очевидно, что успех и точность статистического моделирования зависит в основном от качества последовательности случайных чисел и выбора оптимального алгоритма моделирования.

Задача получения случайных чисел обычно разбивается на две. Вначале получают последовательность случайных чисел, имеющих равномерное распределение в интервале [0,1]. Затем из неё получают последовательность случайных чисел, имеющих произвольный закон распределения. Один из способов такого преобразования состоит в использовании нелинейных преобразований.

Главный недостаток метода Монте-Карло заключается в том, что, являясь в основном численным методом, он не может заменить аналитические методы при расчете существенно новых явлений, где, прежде всего, нужно раскрытие качественных закономерностей.

Преимущество метода Монте-Карло состоит в том, что он способен “сработать” там, где отказывают другие методы.

Аналитические методы исследования позволяют существенно уменьшить погрешность метода Монте-Карло и могут поднять его до уровня получения качественных закономерностей. Синтез аналитических и статистических методов может свести D к очень малой величине, следовательно, уменьшить погрешность.[9]

<...
Другие файлы:

Основы теории статистических измерений
Рассмотрены основы теории измерений вероятностных характеристик случайных процессов. Представлены методы определения погрешностей и их характеристи...

Прикладные методы статистического моделирования
В книге рассмотрены вопросы статистического моделирования динамики автоматизированных систем управления на ЭВМ, а также на моделирующих комплексах. Пр...

Нелинейные преобразования случайных процессов
В книге приведены различные вероятностные характеристики огибающей, случайной фазы и мгновенной частоты узкополосных случайных процессов, необходимые...

Генерирование случайных сигналов и измерение их параметров
В книге рассмотрены принципы генерирования случайных сигналов, обладающих заданными статистическими характеристиками. Приводятся практические схемы не...

Измерение вероятностных характеристик случайных процессов с применением стохастических вычислительных устройств
Книга посвящена вопросам проектирования и использования стохастических вычислительных устройств для измерения вероятностных характеристик случайных пр...