Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Экономико-математическое моделирование

Временные характеристики и функция времени. Графическое представление частотных характеристик

Скачать
Купить
Типовые воздействия. Единичная ступенчатая, импульсная переходная и единичная переходная функция. Связь между входным и выходным процессами во временной области. Графические представления частотных характеристик. Годограф Найквиста. Диаграммы Боде.
Краткое сожержание материала:

1

12

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ИТАС

РЕФЕРАТ

На тему:

«Временные характеристики и функция времени. Графическое представление частотных характеристик»

МИНСК, 2008

В противоположность частотным методам, которые оперируют частотными характеристиками, существуют методы, оперирующие функциями времени. Все воздействия, вообще говоря, являются функциями времени. Среди них в классической теории управления особую роль играют так называемые типовые воздействия.

Строго говоря, и в частотных методах некоторые воздействия играют особую роль. Мы имеем в виду в первую очередь так называемые гармонические воздействия. Все частотные характеристики системы, так или иначе, описывают ее реакцию на гармонические воздействия различной частоты. Во временных методах также существует небольшое число типовых воздействий, реакция на которые представляет первоочередной интерес. Почти все они базируются на единичном ступенчатом воздействии, которое описывается единичной ступенчатой функцией.

1 Типовые воздействия

Единичная ступенчатая функция 1(t). С описательной точки зрения это функция, которая равна нулю в отрицательные моменты времени и единице - в положительные. Принципиальным недостатком таких функций является то, что они не дифференцируемы, тогда как основной математической моделью теории автоматического управления является дифференциальное уравнение.

Простейшим математическим описанием этой функции времени является следующее:

Она рассматривается как предел непрерывных и дифференцируемых функций времени , зависящих от параметра . Примером могут быть функции арктангенса

.

Функция при каждом конкретном значении параметра дифференцируема. Это свойство переносится и на предельное значение этой функции при . Другими словами, можно определить значение производной функции 1(t).

Рисунок 1 - Единичная ступенчатая функция

Дельта - функция (-функция или функция Дирака) определяется как производная от единичной ступенчатой функции. Другими словами,

,

где в качестве функции может быть взята любая последовательность непрерывных дифференцируемых функций, сходящаяся к единичной ступенчатой функции.

В частности, одним из определений -функция является следующее:

.

Последовательности функций, сходящиеся к единичной ступенчатой функции и к -функции при одинаковых значениях параметра , показаны на рисунках 1 и 2 соответственно.

Не смотря на приведенное определение, -функции нередко рассматривается просто как производная единичной ступенчатой функции .

Простейшее определение -функции как функции, равной бесконечности в начале координат и нулю при остальных значениях аргумента мало продуктивно. Широко используются свойства -функции, которые следуют из его определения как предела последовательности непрерывных функций.

Рисунок 2 - -функция

Во-первых, интеграл от -функции по любой конечной области, включающей начало координат, равен единице. В частности

.

Это почти очевидно: -функция является пределом производных последовательности функций, каждая из которых стремится к единице.

Другое не менее важное свойство выражается равенством

,

которое тоже почти очевидно для непрерывных функций, если вспомнить предыдущее свойство.

Наряду с этими двумя типовыми воздействиями иногда применяются тесно связанные с ними воздействия: единичная скорость , единичное ускорение и т.п.

Не трудно доказать, что преобразования Лапласа для этих воздействий:

, , , ….

2 Импульсная переходная функция

Передаточная функция линейной системы полностью ее характеризует. Действительно, по передаточной функции не трудно восстановить дифференциальное уравнение, описывающее эту систему. Передаточная функция системы является изображением некоторой функции времени

,

которая называется импульсной переходной характеристикой этой системы.

Таким образом, импульсная переходная функция системы - это обратное преобразование от ее передаточной функции. Она столь же полно характеризует систему, что и передаточная функция, так как эти две функции связаны между собой как оригинал и изображение.

Импульсная переходная характеристика может быть определена не только как обратное преобразование Лапласа, но и как обратное преобразование Фурье, поскольку оно связано с ним тем же соотношением - прямым и обратным преобразованием Фурье

, .

Фактически, импульсная переходная функция почти никогда не вычисляется в соответствии с этими определениями. Для этой цели используются замечательные свойства самой импульсной переходной функцией и ее связью с другими временными характеристиками системы.

Напомним, что преобразование Лапласа выходного процесса равно передаточной функции, умноженной на преобразование Лапласа входного процесса:

,

и что изображение - функции равно единице. Подставим в последнее выражение единичное значение изображения входного процесса и убедимся, что импульсная переходная функция равна реакции системы при действии на ее входе -импульса.

Под - импульсом, как нетрудно догадаться, понимается импульс, математической моделью которого является - функция. Это объясняет происхождение названия рассматриваемой временной характеристики.

Импульсная переходная функция обладает рядом замечательных свойств. Одно из них касается условия устойчивости, а другое - условия физической осуществимости.

Импульсная переходная функция любой устойчивой системы должна не только стремиться к нулю при увеличении аргумента, но и быть абсолютно интегрируемой

.

Импульсная переходная функция ) любой физически осуществимой системы должна быть равна нулю при отрицательных значениях аргумента

.

Действительно, в любой физически осуществимой системе реакция системы не может наступить раньше причины, ее вызвавшей. В рассматриваемом случае входным воздействием, реакцией на которое является импульсная переходная функция, служит - импульс, который равен нулю при отрицательных значениях аргумента. Следовательно, и реакция на такое воздействие должна быть равна нулю при отрицательных значениях аргумента.

Фактическое определение импульсной переходной функции, как реакции на - воздействие, связано с определенными трудностями.

Во-первых, - импульс бесконечно большой амплитуды, бесконечно малой длительности и единичной площади можно реализовать только приближенно. При этом суждение о том, достаточно ли малая длительность и достаточно ли большая амплитуда, чтобы реакция системы была достаточно близкой к импульсной переходной функции, сказать трудно. Кроме того, не всякая система допускает подачу на ее вход импульса выше определенной величины. Все сказанное о подобном способе определения имеет отношение только к экспериментам над математическими моделями, но не над физическими объектами. Следующая временная характеристика, с одной стороны, имеет очень простую связь с только что рассмотренной, а с другой стороны, допускает сравнительно простую реализацию.

3 Единичная переходная функция

Под единичной переходной функцией понимают реакцию системы на единичное ступенчатое воздействие.

Так как изображение по Лапласу единичной ступенчатой функции известно, то не трудно определить изображение по Лапласу ) единичной переходной функции :

при нулевых начальных условиях. Ясно, что оригинал может быть получен с помощью обратного преобразования найденного изображения. Однако проще воспользоваться каким либо другим способом определения реакции системы на столь простое воздействие.

Предложенная интерпретация единичной переходной функции как реакции на единичное ступенчатое воздействие может служить и основой экспериментального определения этой характеристики. Единичное ступенчатое воздействие, как и дельта -функция, является математической идеализацией реальных сигналов, которые предельно резко меняют свое значение с одного уровня на другое. Единственное различие между идеализированном сигналом и реальным - это время перехода из одного состояния в другое. Имея представление о быстродействии исследуемой системы всегда можно сказать, пренебрежимо мало оно или нет.

Между единичной переходной характеристикой и импульсной переходной функцией существует очень простая связь. Достаточно определить одну из них как определение другой уже не представляет труда.

Не трудно показать, что

.

Таким образом, импульсная переходная и единичная переходная функции связаны межу собой как производная и интеграл. Другими словами, наряду с только что приведенным выражением справедливо и выражение

.

4 Связь м...

Другие файлы:

Синтез частотных характеристик линейных систем автоматического регулирования
Построение логарифмических частотных характеристик разомкнутой системы по заданным показателям качества. Определение по построенным ЛАХ и ЛФХ запасов...

Расчет одноконтурной автоматической системы регулирования температуры печи котельного агрегата
Управление гидравлическими и паровыми турбинами. Передаточная функция объекта управления. Расчет и построение частотных характеристик. Расчет оптималь...

Расчет частотных и переходных характеристик линейных цепей
Анализ частотных и переходных характеристик электрических цепей. Расчет частотных характеристик электрической цепи и линейной цепи при импульсном возд...

Методы математической статистики
Числовые характеристики выборки. Статистический ряд и функция распределения. Понятие и графическое представление статистической совокупности. Метод на...

Частотные характеристики цепей с операционными усилителями и транзисторами
Характеристика основных вопросов, связанных с частотными характеристиками электроцепей ОУ. Передаточные функции активных цепей и каскадно-развязанных...