Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Медицина

Взаимодействия ядов с организмом. Частная токсикология сильнодействующих ядовитых веществ

Тип: шпаргалка
Категория: Медицина
Скачать
Купить
Определение токсикологии. Отличия адаптивных и компенсаторных реакций организма. Особенности трансмембранного транспорта гидрофобных и гидрофильных токсикантов. Факторы, влияющие на поступление ядов в организм, на их метаболизм и на развитие интоксикации.
Краткое сожержание материала:

Размещено на

ВЗАИМОДЕЙСТВИЕ ЯДОВ С ОРГАНИЗМОМ

Дайте определение токсикологии

Токсикология - наука о токсичности (от греч. toxicon - яд и logos - учение) - свойстве, присущем практически всем химическим веществам окружающего мира. Это область медицины, изучающая законы взаимодействия живого организма и яда. Изучающая физические, химические свойства ядов (вредных и отравляющих веществ), механизмы их действия на организм человека и разрабатывающая методы диагностики, лечения и профилактики отравлений.

Дайте определение токсиканта

Вещество, вызывающее отравление или смерть при попадании в организм в малом количестве, называется ядом (токсикантом). Токсические вещества - химические вещества, способные при попадании в организм в достаточных дозах вызывать интоксикацию (отравление) или смерть. Токсичность - как свойство (способность) химических веществ, действуя на биологические системы немеханическим путем, вызывать их повреждение или гибель, или, применительно к организму человека, - способность вызывать нарушение работоспособности, заболевание или гибель.

Чем отличаются адаптивные и компенсаторные реакции организма

В основе адаптивных реакций лежит способность иммунной системы выявлять и особым образом реагировать на чужеродные элементы, имеющие вполне определенную структуру. В большинстве случаев последующие контакты с антигеном сопровождаются усиленной или "адаптированной" реакцией (позитивная память). Компенсаторные реакции обеспечивают функционирование органа (повреждено до 50% клеток), «перекладывая» на иные системы организма часть функций повреждённых клеток.

Что такое «рецептор» токсиканта

Любое химическое вещество, для того чтобы производить биологическое действие, должно обладать как, минимум двумя независимыми признаками: сродством к рецепторам и собственной физико-химической активностью. Под сродством подразумевается степень связи вещества с рецептором, которая измеряется величиной, обратной скорости диссоциации комплекса Токсическое действие вещества пропорционально площади рецепторов, занятой молекулами этого вещества. В таких случаях можно говорить, что при взаимодействии яд и рецептор подходят друг к (другу, как «ключ к замку»). В токсикологии (как и фармакологии) термином "рецептор" обозначают любой структурный элемент живой (биологической) системы, с которым вступает в химическое взаимодействие токсикант (лекарство). В таком прочтении это понятие ввел в химеобиологию в начале ХХ века Пауль Эрлих (1913).

Каковы особенности трансмембранного транспорта гидрофобных и гидрофильных токсикантов

Молекулы ориентированы таким образом, что их гидрофильные группы направлены в сторону белка, а гидрофобные поверхности соприкасаются.

Биологические мембраны представляют собой двойной слой молекул липидов, гидрофильные участки которых обращены в сторону водной фазы, а гидрофобные погружены внутрь мембраны. В липидный бислой встроены молекулы протеинов, которые и определяют тип мембраны, её физиологическую и морфологическую идентичность, свойства и, в том числе, проницаемость для химических веществ. Через биологические мембраны могут проходить жирорастворимые вещества, молекулы воды и лишь некоторые низкомолекулярные гидрофильные соединения.

Для объяснения этого феномена постулируется, что липидные мембраны имеют гидрофильные "поры" диаметром до 0,4 нм. В соответствии с жидкостно-мозаичной моделью Зингера и Николсона, эти "поры" представляют собой проницаемые точки неупорядоченной структуры мембраны (точки выпадения). С позиций теории упорядоченности белковых молекул в мембране, поры - ионные каналы, образуемые белками.

В процессе взаимодействия низкомолекулярного вещества с биомишенью практически всегда формируется несколько типов связей (рисунок 1), поскольку молекула токсиканта, как правило, включает полярный (иногда даже ионизированный), и неполярный фрагменты.

Рисунок 1

Этапы взаимодействия молекулы токсиканта с биомишенью

Если в структуре мишени (например, рецепторе для эндогенных биорегуляторов) полярные и неполярные группы пространственно организованы, между этими участками и особыми участками молекулы токсиканта образуются специфичные связи. Это объясняется пространственной организацией молекулы токсиканта. Такое взаимодействие можно сравнить с ориентацией намагниченных стрелок в магнитном поле.

В целях упрощения объяснения этого механизма выделяют четыре основных типа транспортировки различных веществ.

Первый тип характерен для нейтральных молекул. При этом быстрее всего диффундируют молекулы веществ, обладающих высоким коэффициентом распределения масло/вода, т. е. липофильными свойствами. Растворимые в липидах вещества (например, многие наркотические) могут свободно с минимумом затраты энергии проходить через клеточные мембраны по законам диффузии.

Второй тип трансмембранного транспорта связан с определенными структурами, которые обеспечивают веществам более интенсивную диффузию. Этими свойствами обладают некоторые участки мембраны. Транспортируемая молекула обратимо соединяется с носителем в мембране, который свободно движется (осциллирует) между внутренней и наружной ее поверхностями. Примером является транспорт глюкозы в эритроцитах человека.

Третий тип трансмембранного транспорта связан с потреблением энергии, которая образуется в результате метаболизма аденозинтрифосфорной кислоты (АТФ) в самой мембране. Предполагают, что при этом так называемом активном транспорте молекула вещества соединяется с носителем, который претерепевает определенные химические превращения. Примерами могут служить процессы транспорта ионов калия в клетках млекопитающих, всасывание и выведение веществ в ионизированной форме почечными канальцами и т. д.

Четвертый тип транспорта касается диффузии через поры, в стенках которых есть положительно заряженные частицы, пропускающие только анионы. Однако существуют каналы, пропускающие неэлектролиты. О максимальной величине этих каналов можно судить по размерам самой крупной молекулы, которую они способны пропускать. Мембраны почечных клубочков человека в норме способны пропускать все молекулы, меньшие, чем молекулы альбумина (мол. масса 70 000). Таким образом, в мембранах этого типа транспорт веществ осуществляется по принципу фильтрации.

Каковы особенности транспорта гидрофобных и гидрофильных токсикантов кровью

Количество яда, поступающее к органу, зависит от его объемного кровотока, отнесенного к единице массы тканей. Наибольшее количество яда в единицу времени поступает обычно в легкие, почки, печень, сердце, мозг. Эти, хорошо снабжаемые кровью и насыщенные кислородом ткани, являются более чувствительными к повреждающему действию токсикантов.

В крови токсикант может вступать во взаимодействие не только с белками плазмы, но и форменными элементами крови и прежде всего с эритроцитами. При этом возможно: 1. Связывание вещества клеточной мембраной эритроцитов (связывание с белками мембраны, растворение в липидах клеточной мембраны); 2. Проникновение соединения внутрь клетки, связывание с её содержимым, взаимодействие с гемоглобином.

Фиксация веществ на поверхности эритроцитов отчасти обусловлена наличием отрицательного заряда на внешней поверхности мембраны. Он формируется многочисленными связанными с мембраной молекулами мукополисахаридов. Положительно заряженные вещества, активно взаимодействуют с поверхностью эритроцитов. Гидрофобные связи формируются в водной среде, когда молекулы взаимодействующих веществ контактируют друг с другом неполярными (гидрофобными) участками.

Прохождение ксенобиотиками клеточной мембраны эритроцитов подчиняется общим закономерностям. Из-за высокой концентрации гемоглобина в эритроците вся внутриклеточная вода связана этим белком и не принимает участие в растворении ксенобиотиков. В этой связи, возможности эритроцитов фиксировать гидрофильные молекулы в форме раствора внутри клетки, ограничены.

Каковы основные тканевые депо металлов

Депонирование является временным путём уменьшения содержания токсиканта приносимого кровью. Металлы (ртуть, свинец, мышьяк, кадмий, стронций и т.д.), могут откладываться в депо - клетках печени, почек, костей, нервных тканях, эндокринной системы, жировых тканях. Яды из депо могут вновь поступать в кровь, вызывая обострение хронического отравления.

Какие факторы и как влияют на поступление ядов в организм, на их метаболизм и на развитие интоксикации

Влияние ядов на организм зависит от биологических особенностей вида, пола, возраста, индивидуальной чувствительности организма, строения и физико-химических свойств, количества попавшего в организм вещества, факторов внешней среды (температуры, атмосферного давления и других).

Развитие интоксикации организма зависит от концентрации токсиканта, метода поступления яда в организм - вдыхание (ингаляционный), контактный, приём внутрь и т.д. Чем выше концентрация токсиканта - тем скорее наступает отравление. Большое значение имеет способность организма перерабатывать и выводить продукты интоксикации из своих систем (метаболизм).

Каковы особенности интермитт...

Другие файлы:

Судебная экспертиза наркотических и психотропных, сильнодействующих и ядовитых веществ
Понятие судебной экспертизы наркотических и психотропных, сильнодействующих и ядовитых веществ. Объекты судебной экспертизы и особенности их исследова...

Сильнодействующие ядовитые вещества
Действие сильнодействующих ядовитых веществ на население, защита от них. Характеристика вредных и сильнодействующих ядовитых веществ. Аварии с выбросо...

Аварии с выбросом сильнодействующих ядовитых веществ
Химические вещества и опасные объекты. Общий порядок действия при авариях на химически опасных объектах и с выбросом сильнодействующих ядовитых вещест...

Сильнодействующие ядовитые вещества
Характеристика сильнодействующих ядовитых веществ. Очаг и зона химического поражения, их определение и виды. Концентрация, плотность загрязнения и сто...

Задачи токсикологии боевых отравляющих веществ
Токсикология - наука, изучающая свойства и механизм действия ядовитых и потенциально токсичных веществ. особенности вызываемых ими отравлений и методы...