Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Рішення рівнянь із параметрами

Тип: реферат
Категория: Математика
Скачать
Купить
Визначення поняття "рівняння з параметрами", розгляд принципів рішення даних рівнянь на загальних випадках. Особливості методів розв'язання рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями.
Краткое сожержание материала:

12

Размещено на

Зміст

Введення

Рішення рівнянь із параметрами

Рішення рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями

Висновок

Література

Введення

Актуальність даної теми визначається необхідністю вміти вирішувати такі рівняння з параметрами при складанні незалежного оцінювання знань.

Ціль даної роботи розповісти про рішення рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями.

Для досягнення поставленої мети необхідно вирішити наступні задачі:

дати визначення поняттям рівняння з параметрами;

показати принцип рішення даних рівнянь на загальних випадках;

показати рішення рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями.

Для виконання поставленої мети були використані наступні методи: використання літератури різного типу, робота в групах на уроках алгебри й заняттях елективного курсу по математиці, участь проектної групи в міській конференції по даній темі в 2008 році.

Об'єктом дослідницької роботи було рішення рівнянь із параметрами, зв'язаних із властивостями вище представлених функцій.

Структура даної роботи містить у собі теорію, практичну частину, висновок, бібліографічний список.

Рішення рівнянь із параметрами

рівняння параметр функція логарифмічна

Задачі з параметрами відіграють важливу роль у формуванні логічного мислення й математичної культури в школярів, але їхнє рішення викликає в них значні утруднення. Це пов'язане з тим, що кожне рівняння з параметрами являє собою цілий клас звичайних рівнянь, для кожного з яких повинне бути отримане рішення. Такі задачі пропонуються на єдиному державному іспиті й на вступних іспитах у вузи.

Більшість посібників адресована абітурієнтам, однак починати знайомитися з подібними задачами потрібно набагато раніше - паралельно з відповідними розділами шкільної програми по математиці.

Якщо в рівнянні деякі коефіцієнти задані не конкретними числовими значеннями, а позначені буквами, то вони називаються параметрами, а рівняння параметричним.

Природно, такий невеликий клас задач багатьом не дозволяє засвоїти головне: параметр, будучи фіксованим, але невідомим числом, має як би двоїсту природу. По-перше, передбачувана популярність дозволяє «спілкуватися» з параметром як із числом, а по-друге, - ступінь волі спілкування обмежується його невідомістю. Так, ділення на вираження, що містить параметр, добування кореня парного ступеня з подібних виражень вимагають попередніх досліджень. Як правило, результати цих досліджень впливають і на рішення, і на відповідь.

Основне, що потрібно засвоїти при першому знайомстві з параметром, - це необхідність обережного, навіть, якщо хочете, делікатного обігу з фіксованим, але невідомим числом. Цьому, на нашу думку, багато в чому будуть сприяти наші приклади.

Необхідність акуратного обігу з параметром добре видна на тих прикладах, де заміна параметра числом робить задачу банальної. До таких задач, наприклад, ставляться: зрівняти два числа, вирішити лінійне або квадратне рівняння, нерівність і т.д.

Звичайно в рівняння буквами позначають невідомі.

Вирішити рівняння - значить:

знайти множину значень невідомому, задовольняючому цьому рівнянню. Іноді рівняння, крім букв, що позначають невідоме (X, Y,Z), містять інші букви, називані параметрами(a, b, c). Тоді ми маємо справу не з одним, а з нескінченною множиною рівнянь.

При одних значеннях параметрів рівняння не має корінь, при інших - має тільки один корінь, при третіх - два корені.

При рішенні таких рівнянь треба:

1) знайти множину всіх доступних значень параметрів;

2) перенести всі члени, що містять невідоме, у ліву частину рівняння, а всі члени, що не містять невідомого в праву;

3) привести подібні доданки;

4) вирішувати рівняння ax = b.

Можливо три випадки.

1. а 0, b - будь-яке дійсне число. Рівняння має єдине рішення х = .

2. а = 0, b = 0. Рівняння приймає вид: 0х = 0, рішеннями є всі х R.

3. а = 0, b 0. Рівняння 0х = b

рішень не має.

Зробимо одне зауваження. Істотним етапом рішення рівнянь із параметрами є запис відповіді. Особливо це ставиться до тих прикладам, де рішення як би «гілкується» залежно від значень параметра. У подібних випадках складання відповіді - це збір раніше отриманих результатів. І тут дуже важливо не забути відбити у відповіді всі етапи рішення.

У тільки що розібраному прикладі запис відповіді практично повторює рішення. Проте, я вважаю за доцільне привести відповідь.

Відповідь:

х = при а 0, b - будь-яке дійсне число;

х - будь-яке число при а = 0, b = 0;

рішень немає при а = 0, b ? 0.

Рішення рівнянь із параметрами, зв'язаних із властивостями показовою, тригонометричною й логарифмічною функціями

1. Знайдемо значення параметра n, при яких рівняння 15·10 х - 20 = n - n · 10х + 1 не має коренів?

Рішення: перетворимо задане рівняння: 15·10 х - 20 = n - n · 10х + 1; 15·10 х + n· 10х + 1 = n + 20; 10 х ·(15 + 10n) = n + 20; 10 х = .

Рівняння не буде мати рішень при ? 0, оскільки 10 х завжди позитивно.

Вирішуючи зазначену нерівність методом інтервалів, маємо: ? 0; (n + 20)·(15 + 10n) ? 0; - 20 ? n ? - 1,5.

Відповідь: .

2. Знайдемо всі значення параметра а, при яких рівняння lg2 (1 + х2) + (3а - 2)· lg(1 + х2) + а2 = 0 не має рішень.

Рішення: позначимо lg(1 + х2) = z, z > 0, тоді вихідне рівняння прийме вид: z2 + (3а - 2) · z + а2 = 0 Це рівняння - квадратне з дискримінантом, рівним (3а - 2)2 - 4а2 = 5а2 - 12а + 4. При дискримінанті менше 0, тобто при 5а2 - 12а + 4 < 0 виконується при 0,4 < а <2.

Відповідь: (0,4; 2).

3. Знайдемо найбільше ціле значення параметра а, при якому рівняння cos2x + asinx = 2a - 7 має рішення.

Рішення: перетворимо задане рівняння:

cos2x + asinx = 2a - 7; 1 - 2sin2х - asinx = 2a - 7; sin2х - asinx + a - 4 = 0;

(sinх - 2) · = 0.

Рішення рівняння (sinх - 2) · = 0 дає:

(sinх - 2) = 0; х належить порожній множині.

sinх - = 0; х = (-1)n arcsin + рn, n Z при ? 1. Нерівність ? 1 має рішення 2 ? а ? 6, звідки треба, що найбільше ціле значення параметра а дорівнює 6.

Відповідь: 6.

4. Указати найбільше ціле значення параметра а, при якому корінь рівняння 4х2 - 2х + а = 0 належить інтервалу (- 1; 1).

Рішення: корінь заданого рівняння рівні: х1 = (1+ )

х2 = , при цьому а ? .

За умовою -1 < (1+ ) < 1 < < 3,

- 1 < < 1 > > - 3.

Рішенням, що задовольняють зазначеним подвійним нерівностям, буде рішення подвійної нерівності: - 3 < < 3.

Нерівність - 3 < виконується при всіх а ? , нерівність < 3 - при - 2 < а ? . Таким чином, припустимі значення параметра а лежать в інтервалі (-2; .

Найбільше ціле значення параметра а із цього інтервалу, що одночасно належить і інтервалу (-1; 1), дорівнює 0.

Відповідь: 0.

5. При яких значеннях параметра а число корінь рівняння

2 - х = 0 дорівнює а?

Рішення: побудуємо ескіз графіка функції, в = 2 - х при цьому врахуємо, що функція в - парна і її графік - симетричний щодо осі ординат, у силу чого можна обмежитися побудовою тільки його правої частини ( х ? 0). Також урахуємо, що тричлен х2 - 8х + 7 має коріння х = 1 і х = 7, при х = 0 в = 7, а при х = 4 - мінімум, рівний - 9. На малюнку: пунктирними прямими зображена парабола

в = х2 - 8х + 7 з мінімумом умін рівним - 9 при х хв = 4, і коріннями х1 = 1 і х2 = 7;

суцільними лініями зображена частина параболи в = 2 - 8х + (1 < х < 7), отримана дзеркальним відбиттям щодо осі 0х частини параболи

х2 - 8х + 7 при 1 < х < 7.

(Ескіз лівої частини графіка функції при х < 0 можна одержати, відбивши ескіз прав...

Другие файлы:

Дослідження нестандартних методів рішення рівнянь і нерівностей.
Ознайомлення з нестандартними методами рішення рівнянь і нерівностей. Відомості з історії математики про рішення рівнянь. Розгляд та застосування на п...

Дослідження проблеми тригонометричних рівнянь
Функціональні методи рішення тригонометричних і комбінованих рівнянь. Рішення тригонометричних нерівностей графічним методом. Відомість тригонометричн...

Розв'язування рівнянь з параметрами
Розгляд теоретичних основ рівнянь з параметрами. Основні види даних рівнянь. Аналітичний та графічний методи розв’язування задач із використанням форм...

Задачі з параметрами в курсі математики середньої школи
Системи лінійних рівнянь з двома змінними з параметром. Тригонометричні рівняння та системи тригонометричних рівнянь з параметрами. Лінійні та квадрат...

Дослідження однокрокових методів розв’язання звичайних диференційних рівнянь
Огляд та аналіз методів розв’язання системи диференціальних рівнянь та вибір методів рішення. Алгоритми методів Ейлера. Вибір методу рішення задачі Ко...