Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Применение численных методов для решения математических задач

Тип: курсовая работа
Категория: Математика
Скачать
Купить
Вычисление приближенных величин и погрешностей. Решение алгебраических и трансцендентных уравнений, интерполяция функций и методы численного интегрирования. Применение метода наименьших квадратов к построению эмпирических функциональных зависимостей.
Краткое сожержание материала:

Размещено на

Содержание

Введение

1. Общая теоретическая часть

1.1 Действия с приближенными величинами

1.2 Основные численные методы

1.2.1 Решение алгебраических и трансцендентных уравнений

1.2.2 Интерполяция функций

1.2.3 Метод наименьших квадратов и его применение

1.2.4 Численное интегрирование

1.2.5 Другие задачи, решаемые численными методами

2. Применение метода наименьших квадратов к построению эмпирических функциональных зависимостей

3. Расчетная часть

Заключение

Список использованной литературы

Введение

Численные методы в настоящее время относятся к основным методам решения задач математики и различных ее приложений. Они характеризуются тем, что сводят процесс решения математической задачи к некоторой конечной последовательности операций над числами и приводят к результатам, представленным в виде чисел, числовых векторов и матриц, числовых таблиц и т. п. Их значение возрастает параллельно с развитием вычислительной техники. В то же время полученные численными методами результаты обычно содержат погрешности, являясь лишь приближениями к искомым ответам. Вызвано это рядом объективных причин, среди которых есть не связанные непосредственно с методами вычислений.

Чтобы разобраться в них, проанализируем основные этапы математического решения прикладных задач, а именно:

1. Построение математической модели задачи.

2. Определение исходных данных.

3. Решение полученной математической задачи.

Погрешности появляются уже на первом этапе, ибо математическая модель задачи - это приближенное, идеализированное описание задачи на языке математики. При моделировании объекты и процессы задачи-оригинала, взаимосвязи между ее параметрами заменяются на математические понятия и соотношения.

Ради того чтобы получаемая в итоге математическая задача оказалась доступной для дальнейших исследований, учитывают лишь наиболее важные параметры, условия и особенности исходной задачи. Понятно, что чем меньше факторов отбрасывается, тем точнее получается модель.

Несмотря на приближенность результатов математического моделирования, без него в приложениях математики не обойтись. Оно представляет собой обязательную ступень при переходе от нематематической задачи к математической. Более того, удовлетворительное исследование многих явлений реального мира оказывается возможным лишь тогда, когда удается построить их математические модели.

Следующей причиной появления погрешностей является то, что установить точные значения исходных параметров во многих случаях невозможно. Серьезные проблемы с этим возникают не только при исследовании, например, космических объектов или земной атмосферы, когда для определения исходных данных приходится прибегать к различным прикидкам и сложным измерительным процедурам, но и при решении достаточно простых бытовых задач.

Целью курсового проекта является изучение теории основных численных методов математики и их практическое освоение через выполнение заданий расчетной части.

1. Общая теоретическая часть

1.1 Действия с приближенными величинами

Измерить или вычислить какую-либо величину абсолютно точно не всегда возможно. Поэтому в вычислительной практике преимущественно имеют дело не с точными значениями величин, а с их приближенными значениями.

Под приближенным значением величины понимают значение, незначительно отличающееся от точного значения и заменяющее последнее в вычислениях. При решении практических задач приходится не только приближенно находить значения величин, входящих в данную формулу и производить над ними указанные в формуле действия, но и оценивать возможные погрешности, допущенные как при определении числовых значений отдельных величин, так и при подсчете окончательного результата.

При работе с приближёнными величинами приходится решать следующие задачи:

- давать математические характеристики точности приближённых величин;

- оценивать точность результата, когда известна точность исходных данных;

- находить точность исходных данных, обеспечивающую заданную точность результата;

- согласовывать точность исходных данных с тем, чтобы не затрачивать излишней работы при отыскании или вычислении одних данных, если другие данные слишком грубы;

Определение: абсолютная погрешность - это абсолютная величина разности между точным значением величины и её приближённым значением :

(1.1)

Здесь следует различать два случая:

- точное значение числа нам известно, что на практике очень редко, тогда пользуемся формулой (1.1).

- точное значение числа неизвестно, тогда вводят понятие предельной абсолютной погрешности.

Определение: предельной абсолютной погрешностью приближённого числа называют всякое число, не меньшее абсолютной погрешности этого числа.

Таким образом, если - предельная абсолютная погрешность приближённого числа , то

(1.2)

отсюда следует, что

(1.3)

Значение предельной абсолютной погрешности, обычно, подбирается интуитивно по смыслу задачи.

Понятия абсолютной погрешности и предельной абсолютной погрешности, хотя и дают представление о точности вычислений, однако не всегда достаточны.

Определение: относительной погрешностью приближённого числа называется отношение абсолютной погрешности этого числа к модулю соответствующего точного числа :

(1.4)

Поскольку точное значение величины нам часто не известно, то рассмотрим понятие предельной относительной погрешности .

Определение: предельной относительной погрешностью данного приближённого числа называется всякое число, не меньшее относительной погрешности этого числа:

(1.5)

Отсюда следует, что

(1.6)

т.е. (1.7)

но, как известно:

(1.8)

Сопоставление формул (1.7) и (1.8) даёт соотношение между предельной абсолютной погрешностью и предельной относительной погрешностью :

(1.9)

Из этой формулы иногда выражают и пишут:

(1.10)

Вышеизложенная теория погрешностей основана на допущении, что -погрешности настолько малы, что их квадратами можем уже пренебрегать (на этом основано «обрезание» формулы Тейлора).

Поэтому все введённые формулы теряют силу, если эти условия нарушены. В таких случаях нужно использовать и квадратичные члены, чтобы получить более точную теорию.

Но надо учитывать, что в этом случае формулы значительно усложняются.

1.2 Основные численные методы

1.2.1 Решение алгебраических и трансцендентных уравнений

Пусть задана непрерывная функция f(х) и требуется найти все или некоторые корни уравнения

f(x)=0. (1.11)

Эта задача распадается на несколько задач. Во-первых, надо исследовать количество, характер и расположение корней. Во-вторых, найти приближенные значения корней. В-третьих, выбрать из них интересующие нас корни и вычислить их с требуемой точностью.

Первая и вторая задачи решаются аналитическими и графическими методами. Когда ищутся только действительные корни уравнения, то полезно составить таблицу значений f(x). Если в двух соседних узлах таблицы функция имеет разные знаки, то между этими узлами лежит нечетное число корней уравнения (по меньшей мере, один). Если эти узлы близки, то, скорее всего, корень между ними только один. Но выявить по таблице корни чётной кратности сложно. По таблице можно построить график функции у=f(х) и графически найти точки его пересечения с осью абсцисс. Этот способ более нагляден и дает неплохие приближенные значения корней. Во многих задачах техники такая точность уже достаточна. В технике еще популярны графические методы решения уравнений (номография). Построение графика позволяет выявить даже корни чётной кратности.

Иногда удается заменить уравнение (1.11) эквивалентным ему уравнением (х)=(х), в котором функции y1=(х) и y2=(х) имеют несложные графики. Например, уравнение хsinх-1=0 удобно преобразовать к виду sinx=l/x. Абсциссы точек пересечения этих графиков будут корнями исходного уравнения.

Приближенные значения корней уточняют различными итерационными методами.

1.2.2 Интерполяция функций

Итак, как было сказано выше, задачей интерполяции является поиск такого многочлена, график которого проходит через заданные точки.

Пусть функция y=f(x) задана с помощью таблицы (табл. 1).

Таблица 1

x

x0

x1

x2

xn

Другие файлы:

Численные методы решения задач строительной механики
Одной из характерных особенностей научно-технического прогресса является широкое применение численных математических методов и ЭВМ в различных областя...

Решение прикладных задач численными методами
Математическое описание численных методов решения уравнения, построение графика функции. Cтруктурная схема алгоритма с использованием метода дихотомии...

Математическое программирование
Рассматривается широкий круг вопросов, связанных с математическим программированием. Изложены теоретические основы возникающих здесь задач линейного,...

Применение экономико-математических методов для решения экономических задач

Применение численных методов для задач математического программирования
Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки,...