Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Применение уравнение Лагранжа II рода к исследованию движения механической системы с двумя степенями свободы

Тип: курсовая работа
Категория: Математика
Скачать
Купить
Преимущества уравнений Лагранжа и их применение. Классификация связей внутри механической системы. Возможные перемещения механической системы и число степеней свободы. Применение уравнений Лагранжа второго рода к исследованию механической системы.
Краткое сожержание материала:

23

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет

им. Ф. Скорины»

Математический факультет

Кафедра дифференциальных уравнений

Курсовая работа

«Применение уравнение Лагранжа II рода к исследованию движения механической системы с двумя степенями свободы»

Гомель 2006

Содержание

Введение

1 Механическая система. Связи. Классификация связей

2 Возможные перемещения. Число степеней свободы

3 Обобщенные координаты и обобщенные скорости

4 Обобщенные силы

5 Уравнения Лагранжа второго рода

6 Уравнения Лагранжа второго рода для консервативной системы

7 Применение уравнений Лагранжа второго рода к исследованию механической системы

Заключение

Список использованной литературы

Введение

Уравнения Лагранжа дают единый и притом достаточно простой метод решения задач динамики. Важное преимущество этих уравнений состоит в том, что их вид и число не зависят ни от количества тел (или точек), входящих в рассматриваемую систему, ни от того, как эти тела движутся; определяется число уравнений Лагранжа только числом степеней свободы. Кроме того, при идеальных связях в правые части уравнений входят обобщённые активные силы, и, следовательно, эти уравнения позволяют заранее исключить из рассмотрения все наперёд неизвестные реакции связей.

Основная задача динамики в обобщённых координатах состоит в том, чтобы, зная обобщённые силы и начальные условия, найти закон движения системы, то есть определить обобщённые координаты как функции времени. Уравнения Лагранжа представляют собой обыкновенные дифференциальные уравнения второго порядка относительно обобщённых координат и составляются независимо от того, рассматривается ли абсолютное (по отношению к инерциальной системе отсчёта) или относительное движение механической системы. Из полученных уравнений, если заданы действующие силы и начальные условия, можно, интегрируя эти уравнения, найти закон движения системы. Если же задан закон движения, то составленные уравнения позволяют определить действующие силы.

1 Механическая система. Связи. Классификация связей

Систему материальных точек или тел, движение которой рассматривается, будем называть механической системой. Если между точками (телами) механической системы действуют силы взаимодействия, то она обладает тем свойством, что в ней положение или движение каждой точки (тела) зависит от положения и движения всех остальных. Классическим примером такой системы является солнечная система, в которой все тела связаны силами взаимного притяжения.

Определение 1 [1, с. 357]: Связями называются любого вида ограничения, которые налагаются на положения и скорости точек механической системы и выполняются независимо от того, какие на систему действуют заданные силы.

Рассмотрим, как классифицируются эти связи.

Связи, не изменяющиеся со временем, называются стационарными, а изменяющиеся со временем - нестационарными.

Связи, налагающие ограничения на положения (координаты) точек системы, называются геометрическими, а налагающие ограничения еще и на скорости (первые производные от координат по времени) точек системы - кинематическими или дифференциальными.

Если дифференциальную связь можно представить как геометрическую, т.е. устанавливаемую этой связью зависимость между скоростями свести к зависимости между координатами, то такая связь называется интегрируемой, а в противном случае - неинтегрируемой.

Геометрические и интегрируемые дифференциальные связи называются голономными связями, а неинтегрируемые дифференциальные связи - неголономными.

По виду связей механические системы тоже разделяют на голономные (с голономными связями) и неголономные (содержащие неголономные связи).

Наконец, различают связи удерживающие (налагаемые ими ограничения сохраняются при любом положении системы) и неудерживающие, которые этим свойством не обладают.

2 Возможные перемещения. Число степеней свободы

Определение 2 [1.с. 358]: Возможным перемещением механической системы называется любая совокупность элементарных перемещений точек этой системы из занимаемого в данный момент времени положения, которые допускаются всеми наложенными на систему связями.

Механическая система может иметь множество различных возможных перемещений. Однако для любой из систем можно указать некоторое число таких независимых между собой перемещений, что всякое другое возможное перемещение может быть через них выражено.

Определение 3 [1, с. 359]: Число независимых между собой возможных перемещений механической системы называются числом степеней свободы этой системы.

Следовательно, точка, находящаяся на плоскости, имеет две степени свободы; одновременно ее положение на плоскости определяется двумя независимыми координатами (координатами, каждая из которых может изменяться независимо от другой), например координатами х и у. Свободная материальная точка имеет три степени свободы (независимыми будут три возможных перемещения вдоль трех взаимно перпендикулярных осей); одновременно положение точки определяется тремя независимыми координатами х, у, z.

Этот результат оказывается общим, т.е. у механической системы с геометрическими связями число независимых координат, определяющих положение системы, совпадает с числом ее степеней свободы. Поэтому у такой системы число степеней свободы можно определять как по числу независимых возможных перемещений, так и по числу независимых координат.

3 Обобщенные координаты и обобщенные скорости

Число координат (параметров), определяющих положение механической системы, зависит от количества точек (тел), входящих в систему, и от числа и характера наложенных связей. Будем в дальнейшем рассматривать только системы с геометрическими связями (точнее только голономные системы). У такой системы число независимых координат, определяющих положение системы, совпадает с числом ее степеней свободы. В качестве этих координат можно выбирать параметры, имеющие любую размерность и любой геометрический (или физический) смысл, в частности отрезки прямых или дуг, углы, площади и т.д.

Определение 4 [1, с. 369]: Независимые между собой параметры любой размерности, число которых равно числу степеней свободы системы и которые однозначно определяют ее положение, называются обобщенными координатами системы. Будем обозначать обобщенные координаты буквой q. Тогда положение системы, имеющей s степеней свободы, будет определяться s обобщенными координатами

Определение 5 [1, с. 370]: Производные от обобщенных координат по времени называются обобщенными скоростями системы.

4 Обобщенные силы

Рассмотрим механическую систему из n механических точек ,,…,, находящуюся под действием системы сил ,,…,.

Предположим, что система имеет s степеней свободы, т.е. положение определяется s обобщенными координатами .

При наличии нестационарных связей радиус-вектор является функцией обобщенных координат и времени:

,) (i = 1,2,…, n).

Сообщим элементарное приращение только одной координате , оставляя неизменными все остальные обобщенные координаты.

Тогда радиус-вектор точки М получит приращение , обусловленное приращением этой координаты:

=.

Вычислим работу всех сил, действующих на механическую систему на перемещения точек , вызванных перемещением координаты :

= = ==

Разделив на элементарное приращение обобщенной координаты , получим величину , называемую обобщенной силой:

= (1)

Определение 6 [2, с. 320]: Обобщенной силой , соответствующей обобщенной координате , называется скалярная величина, определяемая отношением элементарной работы действующих сил на перемещение механической системы, вызванном элементарным приращением координаты , к величине этого приращения.

В случае сил, имеющих потенциал, обобщенная сила, соответствующая обобщенной координате , равна взятой со знаком минус частной производной от потенциальной энергии механической системы по этой координате.

= (j =1, 2, …, s).

5 Уравнения Лагранжа второго рода

Предположим, что механическая сис...

Другие файлы:

Исследование колебаний механической системы с одной степенью свободы
Основные теоремы динамики механической системы, вторая основная задача динамики. Применение принципа Лагранжа-Даламбера и уравнений Лагранжа второго р...

Исследование динамики механической системы
Применение дифференциальных уравнений к изучению движения механической системы. Описание теоремы об изменении кинетической энергии, принципа Лагранжа–...

Материальная точка в механике
Определение реакций опор твердого тела, скорости и ускорения точки. Интегрирование дифференциальных уравнений движения материальной точки. Теоремы об...

Кинематика и динамика манипулятора с двумя степенями свободы
Описание схемы и расчет дифференциальных уравнений движения манипулятора с двумя степенями свободы. Кинематический анализ схемы и решение уравнений дв...

Исследование стационарных движений механической системы на устойчивость
Построение уравнений движения системы в виде уравнений Лагранжа второго рода. Изучение стационарных движений механической системы. Получение уравнения...