Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Представления конечных групп

Тип: курсовая работа
Категория: Математика
Скачать
Купить
Группа как непустое множество с бинарной алгебраической операцией, ее свойства и требования. Представления унитарными матрицами и полная приводимость представлений конечных групп. Доказательство основных теорем. Соотношения ортогональности для характеров.
Краткое сожержание материала:

Курсовая работа

"Представления конечных групп"

Содержание

Основные обозначения

Введение

1. Представления конечных групп

1.1 Представления групп

1.2 Представления унитарными матрицами и полная приводимость представлений конечных групп

1.3 Лемма Шура

1.4 Соотношения ортогональности для характеров

1.5 Индуцированные представления

1.6 Произведение представлений

Заключение

Список использованных источников

Основные обозначения

- группа

- порядок группы

- единичный элемент группы

- единичная подгруппа, единичная группа

- множество всех простых делителей натурального числа

- множество всех простых делителей порядка группы

- центр группы

- подгруппа Фиттинга группы

- подгруппа Фраттини группы

- коммутант группы

- централизатор подгруппы в группе

- нормализатор подгруппы в группе

- группа всех автоморфизмов группы

- группа всех внутренних автоморфизмов группы

- является подгруппой группы

- является собственной подгруппой группы

- является максимальной подгруппой группы

- является нормальной подгруппой

- является субнормальной подгруппой группы

- является минимальной нормальной подгруппой группы

- индекс подгруппы в группе

- прямое произведение подгрупп и

- полупрямое произведение нормальной подгруппы и подгруппы

Введение

В данной работе приведены доказательства следующих теорем:

Теорема. Непустое подмножество группы будет подгруппой тогда и только тогда, когда и для всех .

Группой называется непустое множество с бинарной алгебраической операцией (умножением), которая удовлетворяет следующим требованием:

1) операция определена на , т.е. для всех ;

2) операция ассоциативна, т.е. для любых ;

3) в существует единичный элемент, т.е. такой элемент , что для всех , что для всех ;

4) каждый элемент обладает обратным, т.е. для любого существует такой элемент , что .

Более кратко: полугруппа с единицей, в которой каждый элемент обладает обратным, называется группой.

Группу с коммутативной операцией называют коммутативной или абелевой. Если - конечное множество, являющиеся группой, то называют конечной группой, а число элементов в - порядком группы .

Подмножество группы называется подгруппой, если - группа относительно той же операции, которая определена на . Запись означает, что - подгруппа группы , а - что - собственная подгруппа группы , т.е. и .

Централизатор. Пусть - непустое подмножество группы . Совокупность всех элементов группы , перестановочных с каждым элементом множества , называется централизатором множества в группе и обозначается через .

Лемма

1. Если - подмножество группы , то централизатор является подгруппой.

2. Если и - подмножество группы и , то

3. Если - подмножество группы и , то

Центр группы. Центром группы называется совокупность всех элементов из , перестановочных с каждым элементом группы. Центр обозначается через . Ясно, что , т.е. центр группы совпадает с централизатором подмножества в группе . Кроме того, .

Зафиксируем в группе элемент . Пересечение всех подгрупп группы , содержащих элемент , назовем циклической подгруппой, порожденной элементом , и обозначим через .

Теорема. Циклическая подгрупппа , порожденная элементом , состоит из всевозможных целых степеней элемента , т.е.

Следствие. Циклическая подгруппа абелева.

Порядок элемента. Пусть - элемент группы . Если все степени элемента различны, т.е. для всех целых , то говорят, что элемента имеет бесконечный порядок.

Нормализатор. Если - непустое подмножество группы и то и Элемент называется перестановочным с подмножеством , если . Равенство означает, что для любого элемента существует такой элемент , что . Если элемент перестановочен с подмножеством , то и . Совокупность всех элементов группы , перестановочных с подмножеством , называется нормализатором подмножества в группе и обозначается через . Итак,

Лемма. Пусть - непустое подмножество группы , - произвольный элемент группы . Тогда:

1) ;

2) ;

3) ;

4) ;

5) если - подгруппа группы , то

Подгруппа называется нормальной подгруппой группы , если для всех . Запись читается: » - нормальная подгруппа группы «. Равенство означает, что для любого элемента существует элемент такой, что .

Теорема. Для подгруппы группы следующие утверждения эквивалентны:

1) - нормальная подгруппа;

2) подгруппа вместе с каждым своим элементом содержит все ему сопряженные элементы, т.е. для всех ;

3) подгруппа совпадает с каждой своей сопряженной подгруппой, т.е. для всех .

Лемма. Пусть - подгруппа группы . Тогда:

1) ;

2) если и , то ;

3) - наибольшая подгруппа группы , в которой нормальна;

4) если , то . Обратно, если , то ;

5) для любого непустого подмножества группы .

Простая группа. В каждой группе тривиальные подгруппы (единичная подгруппа и сама группа ) являются нормальными подгруппами. Если в неединичной группе нет других нормальных подгрупп, то группа называется простой. Единичную группу считают непростой.

Представления конечных групп

1.1 Представления групп

Пусть - группа всех невырожденных матриц порядка над полем комплексных чисел. Если - произвольная группа, то ее (матричным) представлением называется любой ее гомоморфизм в

G,

такой, что

,

(единичная матрица),

. Число n называется степенью этого представления. Если гомоморфизм A иньективен, то представление называется точным.

Пример 1.1 Отображение, переводящее каждый элемент группы в , является представлением степени . Оно называется тождественным представлением группы и обозначается через .

Пример 1.2 Если - некоторое представление группы , то для каждой невырожденной матрицы отображение также является представлением этой группы.

Пусть и - два представления группы . Если существует невырожденная матрица , такая, что что

,

то представления и называются эквивалентными. Тот факт, что представления и эквивалентны, мы будем обозначать так: . Отношение определяет классы эквивалентных представлений группы .

Пример 1.3. Пусть - симметрическая группа степени . Для элемента

...
Другие файлы:

Описание конечных групп с плотной системой F-субнормальных подгрупп для формации F сверхразрешимых групп
Изучение строения групп по заданным свойствам системы их подгрупп как направлениt в теории конечных групп. Обзор конечных групп с плотной системой F-с...

Произведения конечных групп, близких к нильпотентным
Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разлож...

Линейные представления групп
В книге излагаются основы теории линейных представлений конечных и компактных групп, а также элементы теории линейных представлений групп Ли. Изложени...

Субнормальные подгруппы групп
Строение конечных групп по заданным свойствам их обобщенно субнормальных подгрупп. Использование методов абстрактной теории групп и теории формаций ко...

Общие свойства конечных групп с условием плотности для F-субнормальных подгрупп
Определение и основные свойства конечных групп с условием плотности для F-субнормальных подгрупп. Общие свойства, использующиеся для изучения строения...