Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Практическое применение свойств замечательных кривых

Тип: курсовая работа
Категория: Математика
Скачать
Купить
История развития учения о линиях. Замечательные линии третьего порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска.
Краткое сожержание материала:

Размещено на

44

Размещено на

КУРСОВАЯ РАБОТА

на тему:

«Практическое применение свойств замечательных кривых»

Введение

Актуальность темы заключается в демонстрации применения математических знаний в практической деятельности человека. В курсе изучения аналитической геометрии не предусмотрено рассматривание свойств замечательных кривых, которые широко используются в жизни.

Гипотеза: Использование данного материала расширяет кругозор учащихся по кривым и их свойствам, и показывает их практическое применение в жизни человека.

Цель данной работы: Собрать материал для применения его во время самостоятельного изучения замечательных кривых.

Задачи: В помощь учащемуся. Используя минимум времени, принести максимум пользы.

Практическая значимость работы: Я считаю, что моя работа пригодится студентам доступно и наглядно разобраться в материале. Покажет практическое применение свойств замечательных кривых, научить строить кривые.

Выбор темы

При современном уровне развития технической мысли имеется необходимость в знаниях о замечательных кривых. Они не так уж редки в природе, имеют практическое приложение в жизни человека. Знание их замечательных свойств используется в различных механизмах, используемых человеком в жизни.

Я выбрала эту тему, так как считаю её, интересной и содержательной, развивающей познавательный интерес к аналитической геометрии, открывающей практическое приложение геометрии в жизни. Использование данного материала на лекциях геометрии расширяет кругозор учащихся по кривым, изучаемым по программе. В разных разделах математики и на разных этапах изучения мы встречаемся с кривыми, как третьего, так и второго порядка. Но, нигде не говорится о замечательных свойствах данных кривых, а тем более об их практическом применении. Я считаю, что очень важно учащимся знать замечательные свойства данных кривых, которые широко применяются в жизни. Изучая и даже просто знакомясь с этими свойствами, учащиеся видят действительно практическое применение геометрии.

Для этого я познакомилась с материалом о замечательных кривых и их свойствах в различных пособиях и энциклопедиях по математике.

1. Из истории развития учения о линиях

Понятие линии возникло в сознании человека в доисторические времена. Траектория брошенного камня, очертания цветов и листьев растений, извилистая линия берега реки и другие явления природы с давних пор привлекали внимания людей. Наблюдаемые многократно, они послужили основой для постепенного установления понятия о линии. Но потребовался значительный промежуток времени для того, чтобы наши предки стали сравнивать между собой формы кривых линий. Первые рисунки на стенах пещер, примитивные орнаменты на домашней утвари показывают, что люди умели не только отличать прямую от кривой, но и различать отдельные кривые. Памятники глубокой древности свидетельствуют о том, что у всех народов на некоторой степени их развития имелись понятия прямой и их окружности. Для построения этих линий использовались простейшие инструменты.

Однако лишь с возникновением математических теорий стало развиваться учение о линиях. Греческие ученые создали теорию линий второго порядка. Эти линии рассматривались как сечение конуса плоскостью, вследствие чего в древности их называли коническими сечениями. Конические сечения впервые рассматривал Менехм, который жил в IV веке до н.э..Первое систематическое изложение теории этих линий дал Аполлоний Пергский (III-II вв до н.э.) у своем сочинении «Конические сечения», которое почти целиком дошло до нас. В поисках решения различных задач греческие ученые рассматривали и некоторые трансцендентные линии.

В средневековую эпоху важное достижение греческих ученых были забыты. Математическая наука снова обратилась к изучению кривых только в VII веке. Для исследования линий первостепенное значение имело открытее Декартом и Ферма метода координат способствовавшего возникновению исчисления бесконечно малых. Метод координат в соединении с анализом бесконечно малых позволил перейти к исследованию линий общим способом. Разнообразные проблемы механики, астрономии, геодэзии, оптики, возникши в VII-VIII века, привели к открытию многих новых линий и изучению их геометрических механических свойств. Этими вопросами с большим энтузиазмом занимались крупнейшие математики эпохи - Декарт, Гюйгенс, Лейбниц, братья Бернулли.

Следующий важный шаг в изучении линий был сделан Ньютоном, который начал разработку теории кривых третьего порядка. Впоследствии были поставлены задачи: исследовать кривые четвертого и высших порядков, создать общую теорию алгебраических кривых на плоскости, приступить к систематическому изучению алгебраических поверхностей, начиная с поверхности второго порядка. В решении последней задачи большой вклад внес знаменитый математик VIII Леонард Эйлер, академик Петербургской академии наук. Он описал первое пособие по аналитической геометрии, в котором излагалось теория линий и поверхностей второго порядка.

2. Замечательные линии третьего порядка

Все прямые и кривые второго порядка (окружности, эллипсы, параболы, гиперболы) являются частными случаями кривых третьего порядка.

В общем случае уравнение кривой линии третьего порядка можно записать так: х31у3+3а2х2у+3а3ху2+3а4х2+3а5у2+3а6ху+3а7х+3а8у+а9=0.

Предполагается, что коэффициенты одновременно в нуль не обращаются (в противном случае получилось бы уравнение второй степени) Если все не распадающиеся линии второго порядка исчерпываются окружностью, эллипсом, гиперболой, параболой, то множество линий третьего порядка является более богатым - оно содержит. Свыше 70 видов этих линий. Здесь рассматриваются только некоторые из них, замечательные по своим свойствам и применениям.

Декартов лист

1. Особенности формы. Декартовым листом называется кривая 3-го порядка, уравнение которой в прямоугольной системе имеет вид

(1)

Иногда удобно пользоваться параметрическими уравнениями декартова листа, которые можно получить, полагая y=tx, присоединяя к этому равенству равенство (1) и решая полученную систему относительно х и у, в результате будем иметь:

(2)

откуда следует, что декартов лист является рациональной кривой.

Заметим еще, что полярное уравнение декартова листа имеет вид

(3)

Координаты х и у входят в уравнение декартова листа симметрично, откуда следует, что кривая симметрична относительно биссектрисы у=х. Обычное исследование на особые точки приводит к заключению, что начало координат является узловой точкой декартова листа. Уравнения касательных к алгебраической кривой в ее особой точке, совпадающей с началом координат, можно получить, как известно, приравнивая нулю группу членов низшей степени из уравнения этой кривой. В нашем случае имеем З аху = 0, откуда получим х = 0 и у = 0 - искомые уравнения касательных в узловой точке. Эти касательные совпадают с координатными осями и, следовательно, в начале координат кривая пересекает сама себя под прямым углом. Легко видеть, что в первом координатном угле кривая делает петлю, которая пересекается с прямой у = х в точке

Точки этой петли, в которых касательные параллельны координатным осям, имеют координаты

и (cм. рис. 1)

Для окончательного заключения о форме кривой следует еще найти асимптоту Заменяя в уравнении кривой у на приравняем нулю в полученном уравнении коэффициенты двух членов с высшими степенями х. Получим

и b = - а. Таким образом, декартов лист имеет асимптоту

у = - х - а; следовательно, во 2-м и 4-м координатных углах ветви декартова листа уходят в бесконечность.

Рис. 1

Часто рассматривают повёрнутую на 135 градусов кривую. Её уравнения выглядят так. В прямоугольной системе: , где

Параметрическое:

Вывод уравнений повёрнутой кривой:

Систему координат XOY преобразуют в систему координат UOV, которая получается поворотом осей OX и OY по часовой стрелке на угол и переориентацией оси OX в противоположном направлении:

Выражение старых координат XY через новые UV выглядит так:

, или

После подстановки выражений старых координат через новые уравнение декартова листа преобразуется к следующему виду: .

Вводим параметр , последнее уравнение перепиш...

Другие файлы:

Ортогональные полиномы и кривые распределения вероятностей
Система кривых Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Примеры нахождения кривых распре...

Содержание железнодорожного пути в кривых
В книге изложены особенности устройства, содер-жания и ремонта пути в кривых участках; приведеныметоды расчета выправки кривых, в том числе закре-стов...

Предел последовательности. Теорема Штольца и ее применение
История развития теории пределов. Сущность и виды числовой последовательности, методика вычисления и определение свойств ее предела. Доказательство те...

Курс дифференциальной геометрии
Книга включает сведения о кривых на плоскости, по теории плоских и пространственных кривых и применении к ней дифференцирования вектор-функций, а такж...

Жизненный цикл товара
Понятие жизненного цикла товара и его стадии. Виды кривых жизненного цикла товара в зависимости от специфики отдельных товаров и особенности спроса на...