Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Комплексні числа

Тип: реферат
Категория: Математика
Скачать
Купить
Комплексні числа як розширення множини дійсних чисел. Приклади дії над комплексними числами: додавання, віднімання та множення. Геометрична інтерпретація комплексних чисел. Тригонометрична форма запису комплексних чисел, поняття модуля і аргумента.
Краткое сожержание материала:

РЕФЕРАТ

з Вищої математики

на тему „Комплексні числа”

1. Комплексні числа

У багатьох розділах математики та її застосуваннях неможливо обмежетись розглядом лише дійсних чисел. Вже досить давно під час розв'язування різних задач виникла потреба добувати квадратний корень з від'їмних чисел. Але чисел, які піднесені до квадрату дають від'ємні числа, тоді не знали і тому вважали, що квадратні корені з від'ємних чисел не існують, тобто задачі, які до них приводять, не мають розв'язків. Зокрема, так було під час розв'язування квадратних рівнянь з від'ємним дискримінантом, наприклад:

хІ - 4х + 10 = 0 х?,?=2±Ц-6.

Тому природно постало питання про розширення множини дійсних чисел, прєданням до неї нових так, щоб у розширеній множині крім чотирьох арифметичних дій - додавання, віднімання, множення і ділення (за вийнятком ділення на нуль), можна було виконувати дію добування кореня. Це питання було успішно розв'язано лише у ХІХ сторіччі. Відповідно до прийнятих в математиці принципів розширення поняття числа при розширенні множини дійсних чисел мають задовільнятися такі вимоги:

1) озачення нових чисел мусить спиратися на поняття дійсного числа, і нова множина має містити всі дійсні числа;

2) для нових чисел повині виконуватись п'ять законів прямих арифметичних чисел (пригадайте ці закони);

3) у новій числовій множині мусить мати розв'язок рівняння хІ=-1.

Оскільки існує вимога, щоб у новій числовій множині рівняння хІ=-1 мало розв'язок, необхідно внести деяке нове число, вважаючи його розв'язком цього рівняння. Число, квадрат якого дорівнює -1, позначають буквою і і називають уявною одиницею (і - перша буква латинського слова imaginarius - уявний). Підкреслимо, що рівність іІ=-1 приймається за означенням і не доводиться. До нової множини мають належати числа виду bЯ (добуток дійсного числа на уявну одиницю) і числа виду a + bЯ (сумма дійсного числа a та добуток дійсного числа b на уявну одиницю).

Отже, нова множина множина чисел повина містити всі числа виду a + bЯ.Числа виду a + bЯ, де a і b - довільні дійсні числа, аЯ - уявна одиниця називають комплексними. Слово “комплексний” означає складений. Число a називають дійсною частиною числа a + bЯ , а вираз bЯ - уявною.

Число називають коефіцієнтом при уявній частині. Наприклад, у числі 6 + 7Я дійсна частина 6, уявна 7. Коефіціент при уявній частині дорівнює 7. Дійсною частиною числа 0 + 3Яє число нуль, а уявною - вираз 3Я; коефіцієнт при уявній частині дорівнює 3. Числа виду a + 0Я ототожнюються з дійсними числами, а саме вважають, що a + 0Я=a. Таким чином виконується обов'язкова для будь - якого розширення поняття числа вимога, щоб попередній числовий “запас” входив до нової числової множини як її частина. Множина дійсних чисел є частиною (підмножиною) множини комплексних чисел. Відповідно до вимог, що ставляться при будь - якому розширення поняття числа, при побудові множини комплексних чисел треба ввести за означенням умову рівності цих чисел і правила виконання прямих дій - додавання і множення.

Два комплексних числа a + bЯ і c + dЯрівні між собою тоді і тільки тоді, коли a = c і b=d, тобто коли рівні їх дійсні частини і коефіцієнти при уявних частинах.

Поняття “більше” і “менше” для комплексних чисел не має смислу. Ці числа за величиною не порівнюють. Тому не можна, наприклад, сказати, яке з двох комплексних чисел більше 10Я чи 3Я, 2+5Я чи 5+2Я.

Важливим є поняття про спяжені комплексні числа. Числа a + bЯ і a - bЯ, дійсні частини яких рівні, а коефіцієнти при уявих частинах рівні за модулем, але протилежні за знаком, називають спряженими. Можна сказати простіше: числа a + bЯ і a - bЯ, які відрізняються лише знаком уявної частини, називають спряженими.

Наприклад, спряженими є комплексні числа 4+3Я та 4-3Я; 2-Я та 2+Я; -8+7Я та -8-7Я;-5-Я та -5+Я. Якщо дане число 6Я, то спряженим до нього є -6Я. До числа 11 спряженим буде 11, бо 11+0Я=11-0Я.

2. Дії над комплексними числами

а) додавання комплексних чисел

Означення: сумою двох комплексних чисел a + bЯ і c + dЯ називається комплексне число (a + c) + (b + d)Я, дійсна частина якого і коефіцієнт при уявній частині дорівнюють відповідно сумі дійсних частин і коефіцієнтів при явних частинах додатків, тобто (a + bЯ) + (c + dЯ) = (a + c) + (b + d)Я.

Приклади. Виконати додавання комплексних чисел:

1) (3+2Я) + (-1-5Я) = (3-1) + (2-5)Я = 2-3Я

2) (4-5Я) + (2-Я) = (4+2) + (-5-1)Я = 6-6Я

3) (2+3Я) + (6-3Я) = (2+6) + (3-3)Я= 8

4) (10 - 3Я) + (-10+3Я) = (10-10) + (-3+3)Я = 0

З наведених прикладів випливає, що додавання комплексних чисел ми виконуємо за правилом додавання многочленів. У множині дійсних чисел справедлива рівність a + 0 = a. У множині комплексних чисел нулем є число 0 + 0Я. Справді, яке б не було число , справедлива рівність

(a + bЯ) + (0+0Я) = (a +0) + (b +0)Я = a + bЯ

За аналогією з дійсними числами, для комплексних чисел вводиться поняття про протилежні числа: два числа a + bЯ та -a - bЯ, сумма яких дорівнює 0, називають протилежними.

Додавання комплексних чилел підлягає переставному та сполучному законам. Доведемо, наприклад, справедливість переставного закону додавання комплексних чисел. Нехай,z? = a + bЯ, z?= c + dЯ. Тоді z?+ z? = (a + bЯ) + (c + dЯ) = (a + c) + (b+d )Я , z?+ z? = (c + dЯ) + (a + bЯ) = (c + a) + (d+b)Я. Оскільки для додавання дійсних чисел справджується переставний закон, тобто a + c = c + a; b+d = d+b, тобто (a + c) + (b+d)Я = (c + a) + (d+b)Я , то z? + z? = z?+ z?, що й треба було довести. Означення суми комплексних чисел поширюється і на випадок трьох і більше доданків.

б) віднімання комплексних чисел

Віднімання комплексних чисел означають як дію, обернену до додавання, коли за даною сумою й одним з доданків знаходять другий, невідомий доданок.

Означення. Різницею двох комплексних чисел z?= a + bЯ і z? = c + dЯ називається таке комплексне число z?= x+yЯ , яке в суммі з z? дає z?.

Отже, z?- z?= z?, якщо z? + z?= z?. можливість дії віднімання комплексних чисел та її однозначність потребує доведення.

Доведемо, що для будь - яких комплексних чисел z?= a + bЯ і z? = c + dЯ різниця z?- z? визначена і до того ж однозначно. Доведемо, що існує, і до того ж єдине, комплексне число z?= x+yЯ, яке в сумі з z? дає z?.

За означенням дії віднімання, (c + dЯ) + (x+yЯ) = a + bЯ. виконавши додавання в лівій частині рівності, дістанемо:

(c + x) + (d + y)Я = a + bЯ (1).

З умови рівності двох комплексних чисел маємо:

c + x = a

d + y = b

Ця система має розвиток, і до того ж єдиний: x = a - c, y = b - d. Отже, існує , і до того ж єдина, пара дійсних чисел (x, y), яка задовільняє рівняння (1), що і треба було довести. З доведеного випливає, що віднімання комплексних чисел виконують за таким правилом:

(a + bЯ) - (c + dЯ) = (a - c) + (b - d)Я

Приклади: Виконати віднімання комплексних чисел.

1) (3+4Я) - (1+2Я) = (3-1) + (4-2)Я = 2 + 2Я;

2) (-5+2Я) - (2+Я) = (-5-2) + (2-1)Я = -7+Я;

3) (6+7Я) - (6-5Я) = (6-6) + (7+5)Я = 12Я;

4) (0,3+2,5Я) - (-0,75+1,5Я) = (0,3+0,75Я) + (2,5-1,5Я) = 1,05+Я;

5) (Ц2-2Я) - (Ц2+3Я) = (Ц2-Ц2) + (-2-3)Я = -5Я;

6) 1+1/2) - (1/4-3/5) = (1/3-1/4) + (1/2+3/5) = 1/12 + 11/10.

в) Множення комплексних чисел

Означення. Добутком двох комплексних чисел a + bЯ і c + dЯ називається комплексне число (ac - bd) + (ad + bc)Я . Суть і доцільність цьго означення стане зрозумілою, якщо взяти до уваги, що цей добуток утворений так, як виконується множення двочленів з дійсними коефіцієнтами, а саме (a + bЯ)( c + dЯ) = ac + adЯ + bcЯ + bdЯІ = ac + (ad + bc)Я + bdЯІ. Замінюючи, за означенням, ЯІна -1, дістанемо: bdЯІ = -bd . Відокремивши дійсну частину від уявної, остаточно матимемо:

(a + bЯ)( c + dЯ) = (ac - bd) + (ad + bc)Я (2)

Формулу (2) не слід намагатися механічно запам'ятати. Під час множення комплексних чисел треба користуватись відомим правилом множення двочленів a + bЯ і c + dЯ з наступною заміною ЯІна -1.

Приклади: Виконити множення комплексних чисел.

1) (4-5Я)(3+2Я) = 12+8Я -15Я -10ЯІ= 12+10-7Я =22-7Я;

2)(Ц3-Я)(Ц2+Ц5Я) = Ц6-Ц2Я+Ц15Я-Ц5 ЯІ= (Ц6+Ц5) + (Ц15-Ц2)Я;

3)8Ях3ЯхЦ3 = -24Ц3;

4)(2-Я)(-5) = -10+5Я;

5)(-4-3Я)(-6Я) = -18+24Я.

Дія множення комплексних чисел підлягає основним законам множення, встановленим для дійсних чисел: переставному і сполучному.

Знайдемо добуток двох спряжених комплексних чисел. Маємо: (a + bЯ)( a - bЯ) = aІ - (bЯ)І = aІ -bІЯІ = aІ + bІ, тобто (a + bЯ)( a - bЯ) = aІ + bІ.

Приклади: Обчислити добуток.

1) (3+5Я)(3-5Я) = 9+25 = 34;

2) (2+Я)(2-Я) = 4+1 = 5;

3) (4+Ц3Я)(4-Ц3Я) = 16+3 = 19;

4) (Цх+ЦуЯ)( Цх-ЦуЯ) = х+у;

5) (3/4+2/5Я)(3/4-2/5Я) = 9/16+4/25 = 289/400.

Читаючи рівність (a + bЯ)(...

Другие файлы:

Расширение понятия числа
Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древне...

Комплексні числа
Оскільки існує вимога, щоб у новій числовій множині рівняння х?=-1 мало розв’язок, необхідно внести деяке нове число, вважаючи його розв’язком цього р...

История математических констант - числа "пи" и "е"
Письменная история числа "пи", происхождение его обозначения и "погоня" за десятичными знаками. Определение числа "пи" как отношения длины окружности...

Простое доказательство великой теоремы Ферма
Из уравнений / 18/ и /19/ следует, что необходимым условием для того чтобы числа В и С были целыми, является также одинаковая четность чисел A и X: об...

Іменники семантико-граматичного числа
Вивчення теоретичних аспектів категорії числа іменників. Дослідження іменників семантико-граматичного числа в словнику української мови. Аналіз особли...