Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Клеточные пространства

Тип: курсовая работа
Категория: Математика
Скачать
Купить
Клеточные разбиения классических пространств. Важность для геометрии и топологии клеточного разбиения многообразий Грассмана. Гомотопические свойства клеточных пространств. Теорема о клеточной аппроксимации. Доказательство леммы о свободной точке.
Краткое сожержание материала:

27

Содержание

  • Введение
    • 1. Основные определения
    • 1.1Терминологические замечания
    • 1.2 Комментарии к определению клеточного пространства
    • 2. Клеточные разбиения классических пространств
    • 2.1 Сферы и шары
    • 2.2 Проективные пространства
    • 2.3 Многообразия Грассмана
    • 2.4 Многообразия флагов
    • 2.5 Классические поверхности
    • 3. Гомотопические свойства клеточных пространств
    • 3.1 Теорема Борсука о продолжении гомотопий
    • 3.2 Следствия из теоремы Борсука
    • 3.3 Теорема о клеточной аппроксимации
    • 3.4 Доказательство леммы о свободной точке
    • 3.5 Первые применения теоремы о клеточной аппроксимации
    • Заключение
    • Список использованных источников

Введение

В системе высшего образования весьма значительную роль играет гомотопическая топология, которая почти никогда не рассматривает совершенно произвольных топологических пространств. Обычно она изучает пространства с той или иной дополнительной структурой, причем со времен основоположника топологии Анри Пуанкаре рассматривают структуры двух типов. Первый тип - структуры аналитического происхождения: дифференциальная, риманова, симплектическая и т.д. Структуры второго, более важного для нас типа - комбинаторные структуры. Они заключаются в том, что пространство расчленено на более или менее стандартные, и изучение пространства сводится к изучению взаимного расположения этих частей.

Одна из важнейших из комбинаторных структур - клеточная структура. В гомологии она является эффективным вычислительным средством.

Данная работа посвящена изучению клеточной структуры, приведению некоторых теорем, свидетельствующие о полезности понятия клеточного пространства для гомотопической топологии., а так же подтверждающие необходимость изучения рассмотренной темы и всей топологии в целом, как основы для систематизации знаний по многим разделам высшей математики.

1. Основные определения

Клеточное пространство - это хаусдорфово топологическое пространство К, представленное в виде объединения попарно непересекающихся множеств ("клеток") таким образом, что для каждой клетки существует отображение q-мерного шара в К (характеристическое отображение, отвечающее клетке ), сужение которого на внутренность Int шара представляет собой гомеоморфизм Int?. При этом предполагаются выполненными следующие аксиомы.

(С) Граница = ? клетки содержится в объединении конечного числа клеток с r < q.

(W) Множество F К замкнуто тогда и только тогда, когда для любой клетки замкнуто пересечение F.

(Иногда характеристические отображения считаются фиксированными, т.е. рассматриваются как элемент структуры. Разумеется, такая модификация определения будет явно оговариваться)

1.1Терминологические замечания

1. Термин "клеточное пространство" не является абсолютно общепринятым: говорят также "клеточное разбиение" или "клеточный комплекс" или "CW-комплекс". Выражение "клеточное разбиение" мы будем употреблять как синоним выражения "разбиение пространства на клетки"; термин же "комплекс" будет у нас употребляться исключительно в алгебраическом значении.

2. Обозначения аксиом (С) и (W) являются стандартными; они происходят от английских слов "closure finite" и "weak topology".

Клеточное подпространство клеточного пространства K - это замкнутое его подмножество, составленное и целых клеток; клеточные подпространства являются самостоятельными клеточными пространствами. Важнейшие клеточные подпространства клеточного пространства - его остовы: n-й остов есть объединение всех клеток размерности n (по определению, размерность клетки равна q). Стандартные обозначения для n-го остова пространства или X. Кстати, некоторые говорят "n-мерный остов", но это неправильно: размерность клеточного пространства определяется как верхняя грань размерностей его клеток, и, очевидно, размерность n-го остова меньше или равна n. Клеточное пространство называется конечным (счетным), если оно состоит из конечного (счетного) числа клеток.

Заметим, что для конечных клеточных пространств аксиомы (С) и (W) проверять не нужно: они выполняются автоматически.

1.2 Комментарии к определению клеточного пространства

1. Замыкание клетки может не быть клеточным пространством. Пример: разбиение букета на клетки , и () - делает его клеточным пространством, но если а не есть отмеченная точка окружности , то замыкание последней клетки не является подпространством (см. рис.1).

Рис.1

2. Из (W) не следует (С). Разбиение диска D2 на внутренность Int D2 и отдельные точки граничной окружности удовлетворяет аксиоме (W) (потому что всегда F Int D 2 = F), но не удовлетворяет аксиоме (С).

3. Из (С) не следует (W). Возьмем бесконечное семейство ¦б=1,2,…копий отрезка I, отождествим нулевые концы и топологизируем получившееся множество при помощи метрики: расстояние между точками , равно, если , и равно , если. Разбиение построенного пространства на множества и оставшиеся точки не удовлетворяет, из условий, входящих в определение клеточного пространства, только аксиоме (W): точки составляют последовательность, сходящуюся к 0, и, значит, незамкнутое множество, но пересечение этой последовательности с замыканием любой клетки замкнуто.

Кстати, если, как это только что было, разбиение пространства на клетки удовлетворяет всем условиям из определения клеточного пространства, кроме аксиомы (W), то можно ослабить в этом пространстве топологию, определив новую топологию при помощи аксиомы (W). Эта процедура называется "клеточным ослаблением топологии".

2. Клеточные разбиения классических пространств

2.1 Сферы и шары

При конечном n имеется два канонических клеточных разбиения сферы . Первое состоит из двух клеток: точки (любой, скажем, (1,0,... ..., 0)) и множества (рис.2а). Характеристическое отображение , отвечающее второй клетке, - это обычное "сворачивание" сферы из шара; годится, например, отображение, действующее по формуле , где (рис.3).

Рис.2

Рис.3

Другое каноническое клеточное разбиение сферы состоит из 2n +2 клеток : клетка состоит из точек , у которых и (рис.2б). Заботиться о характеристических отображениях здесь не приходится: замыкание каждой клетки очевидным образом гомеоморфно шару соответствующей размерности.

Заметим, что оба описанные клеточные разбиения сферы получаются из единственного возможного разбиения сферы (двоеточия) посредством применения канонической конструкции клеточного разбиения надстройки: в первом случае нужно брать надстройку над сферой как над пространством с отмеченной точкой, а во втором случае - обыкновенную надстройку.

Существует, конечно, масса других клеточных разбиений сферы : ее можно разбить на 3n+1 - 1 клеток как границу (n+1) - мерного куба, на клеток - как границу (n+1) - мерного симплекса и т.п. .

Все описанные клеточные разбиения, кроме самого первого, годятся для сферы .

Клеточное разбиение шара можно получить из любого клеточного разбиения сферы путем присоединения одной клетки Int с характеристическим отображением id: . Наиболее экономное клеточное разбиение шара состоит, таким образом, из трех клеток. Правда, ни одно из этих разбиений не годится для шара .

2.2 Проективные пространства

При отождествлении диаметрально противоположных точек сферы клетки- клеточного разбиения склеиваются между собой и получается (n+1) - клеточное разбиение пространства R, по одной клетке в каждой размерности q?n. Это же разбиение можно описать так:

R¦.

Еще одно описание этого разбиения: имеется цепочка включений

R R R R,

и мы полагаем eq = R - R. Характеристическим отображением для eq служит композиция канонической проекции Dq R и включения RR. При n= наша конструкция доставляет клеточное разбиение пространства R, содержащее по одной клетке каждой размерности. Конструкция имеет также комплексный, кватернионный и кэлиев аналоги. Она дает: разбиение пространства С на клетки размерностей 0, 2, 4,..., 2n; разбиение пространства Hна клетки размерностей 0, 4, 8,..., 4n; разбиение пространства СаР2 на клетки размерностей 0,8,16; клеточные разбиения пространств Си H, содержащие по одной клетке в каждой размерности, делящейся, соответственно, на 2 и 4. Например, пространство С разбивается на клетки

С¦

с характеристическими отображениями

C С.

2.3 Многообразия Грассмана

Описываемое ниже клеточное разбиение многообразий Грассмана очень важно для геометрии и топологии (особенно для теории характеристических классов). Составляющие его клетки называются клетками Шуберта, а само оно называется шубертовским.

...
Другие файлы:

Введение в топологию
Подробно изложены классические понятия и методы топологии, необходимые для специалиста и полезные для любого математика и грамотного физика: геометрич...

Иммунодефициты
Первичные иммунодефициты: комбинированные, Т-клеточные, В-клеточные, дефекты системы мононуклеарных фагоцитов и гранулоцитов, недостаточность системы...

Банаховы пространства. Метрические и нормированные пространства
Наделение множества метрикой, основные аксиомы метрического пространства. Равномерная метрика, нормы элементов и линейное пространство. Фундаментальна...

Клеточные оболочки разных групп растений
Общая характеристика клеточного строения и его функции разных групп растений. Клеточные оболочки водорослей, грибов, высших споровых растений. Особенн...

Пространство и время как форма бытия материи
Субстанциальная и реляционная концепции пространства и времени. Основные свойства пространства и времени. Критика идеалистических и метафизических кон...