Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Введение во фракталы

Тип: курсовая работа
Категория: Математика
Скачать
Купить
Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.
Краткое сожержание материала:

- 14 -

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ………………………………………………………2

2. КЛАССИЧЕСКИЕ ФРАКТАЛЫ……………………………..3

2.1. Самоподобие………………………………………………….3

2.2. Снежинка Коха………………………………………………3

2.3. Ковер Серпинского …………………………………………5

3. L-СИСТЕМЫ…………………………………………………....6

4. ХАОТИЧЕСКАЯ ДИНАМИКА………………………………10

4.1. Аттрактор Лоренца…………………………………………10

4.2. Множества Мандельброта и Жюлиа……………………..11

5. ЗАКЛЮЧЕНИЕ………………………………………………...13

6. СПИСОК ЛИТЕРАТУРЫ…………………………………….14

1.ВВЕДЕНИЕ

Когда большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, коническое сечение, многоугольник, сфера, квадратичная поверхность, а также их комбинациями. К примеру, что может быть красивее утверждения о том, что планеты в нашей солнечной системе движутся вокруг солнца по эллиптическим орбитам?

Однако многие природные системы настолько сложны и нерегулярны, что использование только знакомых объектов классической геометрии для их моделирования представляется безнадежным. Как к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических конфигураций, которое мы наблюдаем в мире растений и животных? Представьте себе всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела. Представьте, как хитроумно устроены легкие и почки, напоминающие по структуре деревья с ветвистой кроной.

Столь же сложной и нерегулярной может быть и динамика реальных природных систем. Как подступиться к моделированию каскадных водопадов или турбулентных процессов, определяющих погоду?

Фракталы и математический хаос --- подходящие средства для исследования поставленных вопросов. Термин фрактал относится к некоторой статичной геометрической конфигурации, такой как мгновенный снимок водопада. Хаос --- термин динамики, используемый для описания явлений, подобных турбулентному поведению погоды. Нередко то, что мы наблюдаем в природе, интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько угодно раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т.д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды --- вы снова увидите горы. Так проявляется характерное для фракталов свойство самоподобия.

Во многих работах по фракталам самоподобие используется в качестве определяющего свойства. Следуя Бенуа Мадельброту, мы принимаем точку зрения, согласно которой фракталы должны определяться в терминах фрактальной (дробной) размерности. Отсюда и происхождение слова фрактал (от лат. fractus --- дробный).

Понятие дробной размерности представляет собой сложную концепцию, которая излагается в несколько этапов. Прямая --- это одномерный объект, а плоскость --- двумерный. Если хорошенько перекрутив прямую и плоскость, можно повысить размерность полученной конфигурации; при этом новая размерность обычно будет дробной в некотором смысле, который нам предстоит уточнить. Связь дробной размерности и самоподобия состоит в том, что с помощью самоподобия можно сконструировать множество дробной размерности наиболее простым образом. Даже в случае гораздо более сложных фракталов, таких как граница множества Мандельброта, когда чистое самоподобие отсутствует, имеется почти полное повторение базовой формы во все более и более уменьшенном виде.

Многие замечательные свойства фракталов и хаоса открываются при изучении итерированных отображений. При этом начинают с некоторой функции y = f(x) и рассматривают поведение последовательности f(x), f(f(x)), f(f(f(x))),... В комплексной плоскости работы такого рода восходят, по всей видимости, к имени Кэли, который исследовал метод Ньютона нахождения корня в приложении к комплексным, а не только к вещественным, функциям (1879). Замечательного прогресса в изучении итерированных комплексных отображений добились Гастон Жюлиа и Пьер Фату (1919). Естественно, все было сделано без помощи компьютерной графики. В наши дни, многие уже видели красочные постеры с изображением множеств Жюлиа и множества Мандельброта, тесно с ними связанного. Освоение математической теории хаоса естественно начать именно с итерированных отображений.

Изучение фракталов и хаоса открывает замечательные возможности, как в исследовании бесконечного числа приложений, так и в области чистой математики. Но в то же время, как это часто случается в так называемой новой математике, открытия опираются на пионерские работы великих математиков прошлого. Сэр Исаак Ньютон понимал это, говоря: «Если я и видел дальше других, то только потому, что стоял на плечах гигантов».

2.КЛАСИЧЕСКИЕ ФРАКТАЛЫ

2.1. Самоподобие.

Разделим отрезок прямой на N равных частей. Тогда каждую часть можно считать копией всего отрезка, уменьшенного в 1/r раз. Очевидно, N и r связаны отношением Nr = 1 Если квадрат разбить на N равных квадратов (с площадью, в 1/r2 раз меньше площади исходного), то соотношение запишется как Nr2 = 1. Соответственно, общая формула соотношения запишется в виде:

Nrd = 1. (2.1)

Множества, построенные выше, обладают целой размерностью. Зададимся вопросом, возможно ли такое построение, при котором показатель d в равенстве (2.1) НЕ является целым, то есть такое, что при разбиении исходного множества на N непересекающихся подмножеств, полученных масштабированием оригинала с коэффициентом r, значение d не будет выражаться целым числом. Ответ --- решительное да! Такое множество называется самоподобным фракталом. Величину d называют фрактальной (дробной) размерностью или размерностью подобия. Явное выражение для d через N и r находится логарифмированием обеих частей (2.1):

logN

d = --------- (2.2)

log 1/r

Логарифм можно взять по любому основанию, отличному от единицы, например по основанию 10 или по основанию е ~ 2,7183.

2.2. Снежинка Коха.

Граница снежинки, придуманной Гельгом фон Кохом в 1904 году (рис.2.2.1), описывается кривой, составленной их трех одинаковых фракталов размерности d ~ 1,2618. Каждая треть снежинки строится итеративно, начиная с одной из сторон равностороннего треугольника. Пусть Ko --- начальный отрезок. Уберем среднюю треть и добавим два новых отрезка такой же длины, как показано на рис. 2.2.2. Назовем полученное множество K1 . Повторим данную процедуру многократно, на каждом шаге заменяя среднюю треть двумя новыми отрезками. Обозначим через Kn фигуру, полученную после n-го шага.

Интуитивно ясно, что последовательность кривых Kn при n стремящемся к бесконечности сходится к некоторой предельной кривой К. Рассмотрим некоторые свойства этой кривой.

Если взять копию К, уменьшенную в три раза (r = 1/3), То всё множество К можно составить из N = 4 таких копий. Следовательно, отношение самоподобия (2.1) выполняется при указанных N и r, а размерность фрактала будет:

d = log(4)/log(3) ~ 1,2618

Рис 2.2.1. Снежинка Коха.

Еще одно важное свойство, которым обладает граница снежинки Коха --- ее бесконечная длина. Это может показаться удивительным, потому что мы привыкли иметь дело с кривыми из курса математического анализа. Обычно гладкие или хотя бы кусочно-гладкие кривые всегда имеют конечную длину (в чем можно убедиться интегрированием). Мандельброт в этой связи опубликовал ряд увлекательных работ, в которых исследуется вопрос об измерении длины береговой линии Великобритании. В качестве модели он

Рис. 2.2.2. Построение снежинки Коха.

- 14 -

использовал фрактальную кривую, напоминающую границу снежинки за тем исключением, что в нее введен элемент случайности, учитывающий случайность в природе. В результате оказалось, что кривая, описывающая береговую линию, имеет бесконечную длину.

Доказательство приводится в [1].

2.3. Ковер Серпинского.

Еще один пример простого самоподобного фрактала --- ковер Серпинского (рис. 2.3.1), придуманный польским математиком Вацлавом Серпинским в 1915 году. Сам термин ковер (gasket) принадлежит Мандельброту. В способе по...

Другие файлы:

Фракталы как степень организованности инвестиционных процессов
Фракталы в природе и науке; особенности фрактальной природы инвестиционных процессов на фондовых рынках мира и в Украине, степени их организованности....

Фракталы
Ссылки для скачивания:...

Хаос, фракталы и информация

Фракталы в нефтегазовой геологии и геофизике

Фракталы и вейвлеты для сжатия изображений в действии