Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Математика

Вариации при исчислении

Тип: курсовая работа
Категория: Математика
Скачать
Купить
Понятие функционала и оператора. Задачи, приводящие к экстремуму функционала, и необходимые условия его минимума. Связь между вариационной и краевой задачами. Функционалы, зависящие от нескольких функций. Вариационные задачи с подвижными границами.
Краткое сожержание материала:

44

1. Элементы вариационного исчисления

1.1 Понятие функционала и оператора

В курсе высшей математики вводилось понятие функции. Если некоторому числу x из области D ставится в соответствие по определенному правилу или закону число y, то говорят, что задана функция y = f(x). Область D называют областью определения функции f(x).

Если же функции y(x) ставится в соответствие по определенному правилу или закону число J, то говорят, что задан функционал J = J(y). Примером функционала может быть определенный интеграл от функции y(x) или от некоторого выражения, зависящего от y(x),

Если теперь функции y(x) ставится в соответствие по определенному правилу или закону вновь функция z(x), то говорят, что задан оператор z = L(y), или z = Ly.

Примерами дифференциальных операторов могут служить:

Дадим более строгое определение функционала. Пусть A - множество элементов произвольной природы, и пусть каждому элементу u є A приведено в соответствие одно и только одно число J(u). В этом случае говорят, что на множестве A задан функционал J. Множество A называется областью определения функционала J и обозначается через D(J); число J(u) называется значением функционала J на элементе u. Функционал J называется вещественным, если все его значения вещественны. Функционал J называется линейным, если его область определения есть линейное множество и если

J (?u + ?v) = ?J(u) + ?J(v).

1.2 Задачи, приводящие к экстремуму функционала

Рис. 1.1

Задача о брахистохроне

Зарождение вариационного исчисления относят обычно к 1696 г., когда И. Бернулли поставил так называемую задачу о брахистохроне: точки А (0,0) и В (а, b) расположены в вертикальной плоскости (xy) (рис. 1). Какова должна быть кривая, лежащая в плоскости (xy) и соединяющая точки А и В, чтобы материальная точка, двигаясь без трения, скатывалась по этой кривой из точки А в точку В в кратчайшее время?

Искомая кривая и была названа брахистохроной.

Пусть уравнение кривой АВ есть y = u(x). Рассмотрим некоторый момент времени t, и пусть в этот момент движущаяся точка находится на расстоянии y от оси x. Тогда , где v - скорость движущейся точки, g - ускорение силы тяжести. В то же время

Отсюда

.

Обозначим через Т время, в течение которого материальная точка достигает точки В. Интегрируя, находим

(1.1)

Задача сводится к следующему: надо найти функцию y = u(x), удовлетворяющую условию

u(0) = 0; u(а) = b (1.2)

и сообщающую интегралу (1.1) наименьшее значение. Условия (1.2) означают, что искомая кривая должна проходить через заданные точки А и В. Такого типа условия принято называть граничными, или краевыми, так как они относятся к концам промежутка, на котором должна быть определена искомая функция.

Примером применения кривой в виде брахистохроны служит образующая цилиндрических поверхностей, используемых на детских площадках, в аттракционах для спуска с возвышения, на трамплинах.

Задача о наибольшей площади

Сформулируем эту задачу так: среди всех плоских кривых, имеющих данную длину и оканчивающихся в точках А (а, 0) и В (b, 0), найти кривую, ограничивающую вместе с отрезком [а, b] оси x область с наибольшей площадью.

Пусть уравнение кривой будет y = u(x). Задача заключается в том, чтобы найти функцию u(x), удовлетворяющую краевым условиям

u(а) = u(b) = 0 (1.3)

и тождеству

(1.4)

и сообщающую интегралу

(1.5)

наибольшее значение.

Общим для рассмотренных задач является то, что каждый раз ищется функция, удовлетворяющая тем или иным поставленным условиям и сообщающая экстремальное значение заданному функционалу.

Приведенные здесь задачи относятся к ветви математического анализа, называемой вариационным исчислением.

1.3 Постановка задачи вариационного исчисления

Задача вариационного исчисления состоит в следующем: дан функционал J с областью определения D(J); требуется найти элемент u0 є D(J), сообщающий функционалу либо минимальное значение

, (1.6)

либо максимальное значение

. (1.7)

Задача о максимуме функционала J тождественна с задачей о минимуме функционала - J, поэтому в дальнейшем будем рассматривать только задачу о минимуме функционала J.

В приведенной общей формулировке задачу вариационного исчисления решить вряд ли возможно, поэтому наложим на функционал J некоторые ограничения.

Будем считать, что D(J) есть часть некоторого пространства Х. Чтобы сформулировать дальнейшие ограничения, введем понятие линейного многообразия. Пусть М - линейное множество элементов пространства Х и ы - некоторый фиксированный элемент этого пространства. Линейным многообразием в пространстве Х назовем совокупность элементов, каждый из которых можно представить в виде

u = ы + ?, ?єМ. (1.8)

Если ыєМ, то, очевидно, так определенное линейное многообразие совпадает с М.

Требование 1. Область определения D(J) функционала J есть линейное многообразие.

Будем считать также, что пространство Х бесконечномерно. Тогда в Х линейное множество М также бесконечномерно и, следовательно, из него можно выделить конечномерное подпространство.

Требование 2. Если ? пробегает любое конечномерное подпространство, содержащееся в М, то на этом подпространстве функционал J(u) = J (ы + ?) непрерывно дифференцируем достаточное число раз.

Введем понятие об абсолютном и относительном минимуме функционала. Функционал J достигает на элементе u0 є D(J) абсолютного минимума, если неравенство

J(u0) = J(u) (1.9)

Справедливо для любого элемента u є D(J). Тот же функционал достигает на элементе u0 относительного минимума, если неравенство (9) справедливо для элементов u є D(J), достаточно близких к u0.

Абсолютный минимум называют еще сильным минимумом, а относительный - слабым.

Существует аналогия между нахождением минимума функции и минимума функционала. При нахождении минимума функции первая производная функции приравнивается к нулю и находится точка, подозрительная на экстремум. Затем с помощью второй производной проверяется достаточное условие экстремума. При нахождении минимума функционала находится первая вариация функционала и приравнивается к нулю. В результате получаем необходимое условие экстремума функционала. Для проверки достаточного условия экстремума функционала находится вторая вариация функционала.

1.4 Первая вариация и градиент функционала

Будем рассматривать функционал J, подчиненный требованиям 1, 2. Возьмем произвольный элемент u є D(J) и произвольный элемент ? є М. Обозначим через ? произвольное вещественное число. Нетрудно видеть, что элемент

u + ?? є D(J). (1.10)

Составим выражение J (u + ??). В силу требования 2 J (u + ??) есть непрерывно дифференцируемая функция от ?. Вычислим ее производную и возьмем значение этой производной при ? = 0

. (1.11)

В результате получим число, которое можно рассматривать как значение функционала (11), зависящего от двух элементов u и ?.

Определение. Функционал

называется первой вариацией функционала J на элементе u и обозначается символом ?J (u, ?):

. (1.12)

При этом разность двух функций u є D(J) и u1 є D(J) называют вариацией функции u и обозначают ?u = u(х) - u1 (х).

Пример. Найти первую вариацию функционала

(1.13)

область определения которого D(J) состоит из функций, удовлетворяющих следующим условиям: uС(1) [a, b] и

u(а) = А, u(b) = В, (1.14)

где А и В-заданные постоянные. Условия (14) означают, что кривые у = u(х), где uD(J), проходят через две фиксированные точки (а, А) и (b, В).

Несложно показать, что функционал (13) удовлетворяет оговоренным выше двум требованиям, кроме того, он удовлетворяет требованию 3.

Требование 3. Вариация ?J (u, ?) - не только однородный, но и аддитивный функционал от ?.

Составим вариацию функционала (1.13)

(1.15)

Можно показать, что интеграл:

(1.16)

есть ограниченный функционал от ?, при этом считаем, что ?(х) непрерывно дифференцируема и удовлетворяет условиям:

?(а) = ?(b) = 0. (1.17)

В этом случае интеграл (1.16) можно взять по частям

Таким образом, интеграл (1.15) можно записать в виде

. (1.18)

<...
Другие файлы:

Показатели вариации
Расчет показателей вариации: среднее арифметическое, мода, медиана, размах вариации, дисперсия, стандартное и среднее линейное отклонения, коэффициент...

Сущность и значение показателей вариации
Сущность понятия "вариация". Относительные показатели вариации. Размах вариации как важный показатель колеблемости признака. Коэффициент вариации случ...

Изучение структурных средних и показателей вариации
Показатели признака вариации в ряду. Среднее квадратическое отклонение, линейное отклонение, дисперсия, коэффициент вариации. Нижняя граница модальног...

Контрольная по статистике
Среднее значение показателя (среднее арифметическое). Показатели вариации - размах вариации, среднее линейное отклонение, среднее квадратическое откло...

Вариации на оригинальную тему op.15
Концертный репертуар скрипача. Вариации на оригинальную тему Г.Венявского для скрипки и фортепиано (Соч.15)....