Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Химия

Выбор реактора для проведения процесса окисления хлороводорода

Тип: курсовая работа
Категория: Химия
Скачать
Купить
Хлороводород: производство, применение. Выбор адиабатического реактора для синтеза HCl. Программа расчета адиабатического коэффициента. Программа и анализ зависимости объема реактора от начальной температуры, степени превращения, начальной концентрации.
Краткое сожержание материала:

Размещено на

Задание на курсовую работу

Обосновать выбор реактора (адиабатический реактор идеального вытеснения или адиабатический реактор полного смешения) для проведения реакции окисления хлороводорода

Проанализировать изменение VR, выбравшего по п.1, от T0,P,x,ZA0, если через реактор проходит 25000 м3/ч исходной смеси.

Введение

Технология - учение о выгодных (т.е. поглощающих наименее труда людского и энергии природы) приемах переработки природных ресурсов в продукты, потребные (необходимые, или полезные, или удобные) для применения в жизни людей.

Происхождение слова «технология» (от греч. «technos» - искусство, ремесло и logos - учение, наука) вполне отвечает его содержанию: учение об умении, искусстве перерабатывать исходные вещества в полезные продукты.

Химическая технология представляет собой переработку, в процессе которой превалируют химические и физико-химические явления, что приводит к изменению состава, свойств и строения вещества.

Химическая технология - естественная, прикладная наука о способах и процессах производства продуктов (предметов потребления и средств производства), осуществляемых с участием химических превращений технически, экономически и социально целесообразным путем.

Химическая технология интегрирует в себе знания о химических превращениях, физико-химических свойствах и явлениях переноса, сведения из математики, механики, экономики и других наук и вырабатывает знания о взаимодействии отдельных явлений.

По мере развития химической промышленности содержание химической технологии обогащалось новыми сведениями, закономерностями. Значительный прогресс науки в последние годы связан с применением современных вычислительных средств для решения теоретических и прикладных задач.

Материальной основой всех химико-технологических процессов являются машины и аппараты химических производств. Эффективность химического производства обеспечивается за счет систематического повышения его технического уровня на основе использования мощных, непрерывных, малостадийных и менее энергоемких аппаратов. Так, выбор и расчет аппарата, ректификационной колонны, реактора является важным критерием, определяющим технологический процесс.

Краткие сведения о технологии окисления хлористого водорода

В последние десятилетия в промышленности органического синтеза все шире применяются хлор, хлористый водород и соляная кислота.

Разложение хлористого водорода воздухом было запатентовано в 1845 г. Окслэндом. Он предлагал пропускать смесь обоих газов через раскаленную пемзу, охлаждать и вымывать водой неразложившийся хлористый водород. В 1855 г. Фогель предложил для получения хлора использовать нагретую хлористую медь. В 1868 г. Дикон предложил комбинацию мыслей Окслэнда и Фогеля: непрерывный поток смеси хлористого водорода и воздуха пропускали через нагретую пемзу, пропитанную хлористой медью. В настоящее время окисляют не воздухом, а кислородом, что позволяет получить концентрированный хлор при применении высокоактивных катализаторов.

В настоящее время уделяется большое внимание созданию рациональных методов переработки и использования хлористого водорода, но процессы переработки абгазного хлористого водорода усложняется из-за наличия примесей органических веществ. Наиболее распространенным методом использования абгазного хлористого водорода является переработка его в соляную кислоту. Способы делятся на две группы. Первая группа базируется на получении хлора из газов, содержащих хлористый водород. К ней относятся каталитические методы окисления, процессы электролиза соляной кислоты, плазменные методы окисления хлористого водорода и другие. Вторая группа методов основывается на использовании абгазного хлористого водорода в качестве исходного сырья.

Окисление хлористого водорода кислородом также производят с помощью расплавленной смеси FeCL3 + KCL в две стадии, осуществляемых в отдельных реакторах. В первом реакторе происходит окисление хлорного железа с образованием хлора:

2FeCL3 + 1.5KCL= Fe2O3 +3CL2.

Во втором реакторе хлорное железо регенерируется из окиси железа хлористым водородом:

Fe2O3 + 6 HCL =2FeCL3 + 3H2O.

Процесс каталитического окисления хлористого водорода лучше осуществлять в аппарате, в котором контактная масса, состоящая из Fe2O3 ,KCL и хлорида меди, кобальта или никеля, нанесенных на инертный носитель, перемещается сверху вниз. В верхней части аппарата она проходит горячую зону хлорирования, где Fe2O3 превращается в FeCL3, взаимодействуя с HCL. Затем контактная масса опускается в зону охлаждения, где под действием кислорода образуется элементарный хлор, а FeCL3 переходит в Fe2O3.

Хлороводород

Хлороводород, а особенно его водный 37% раствор, известный как соляная кислота, кажется простым веществом. И действительно, его химическая формула - HCl - одна из самых коротких в неорганической химии. Между тем, вопреки, а может благодаря, своей простоте, хлороводород не только широко распространен в природе, но и выполняет множество ключевых функций. Например, соляная кислота - основной активный компонент желудочного сока человека и других млекопитающих. Без этого компонента, как несложно догадаться, питание людей было бы невозможно. То есть безо всякого преувеличения можно сказать, что на хлороводороде основано человеческое существование, хотя многие об этом и не задумываются.

Хлороводород (HCl) - бесцветный, термически устойчивый газ с резким запахом, дымящий во влажном воздухе, легко растворяется в воде (до 500 объемов газа на один объем воды) с образованием хлороводородной или соляной кислоты. Температура плавления: ?115 °C (?158 K), температура кипения: ?85 °C (?188 K), молекулярная масса - 70,9 а. е. м.

Соляная кислота - раствор хлористого водорода в воде; сильная одноосновная кислота. Бесцветная, «дымящая» на воздухе жидкость (техническая соляная кислота желтоватая из-за примесей Fe, Cl2 и др.). Максимальная концентрация при 20°С равна 38% по массе, плотность такого раствора 1,19 г/см?.

Физические свойства

...
Другие файлы:

Выбор реактора для проведения процесса окисления монооксида азота
Технология синтеза аммиака. Материальный и тепловой балансы РИВ и РПС. Выбор адиабатического реактора для синтеза NH3. Расчет адиабатического коэффици...

Выбор реактора для окисления диоксида серы
Общие сведения о диоксиде серы, термодинамика окисления. Ванадиевые катализаторы для окисления, механизм и кинетика. Материальный и тепловой баланс РИ...

Выбор реактора для проведения реакции окисления сернистого ангидрида в серный ангидрид
Одним из основных элементов любой химико-технологической системы является химический реактор. Химический реактор – это аппарат, в котором осуществляют...

Выбор реактора для проведения реакции гидрирования ацетона до спирта
Основные химические свойства ацетона и изопропилового спирта, области применение и влияние на человека. Получение изопропилового спирта из ацетона. Те...

Физический расчет ядерного реактора
Конструкция реактора и выбор элементов активной зоны. Тепловой расчет, ядерно-физические характеристики "холодного" реактора. Многогрупповой расчет, с...

Конц (вес) c: kg HCl/kg

Конц. (г/л) c: kg HCl/m?

Плотность с: kg/l

Молярность M

 pH 

Вязкость з: mPa·s

Удельная тепло- емкость s: kJ/(kg·K)

Давление пара PHCl: Pa

Т кипения b.p.

Т плавления m.p.

10 %

104,80

1,048

2,87 M

-0,5

1,16

3,47

0,527

103 °C

?18 °C

20 %

219,60

1,098

6,02 M

-0,8

1,37

2,99

27,3

108 °C

?59 °C

30 %

344,70

1,149

9,45 M

-1,0

1,70

2,60

1,410

90 °C

?52 °C

32 %

370,88

1,159

10,17 M

-1,0

1,80

2,55

3,130

84 °C

?43 °C

34 %

397,46

1,169

10,90 M

-1,0

1,90

2,50

6,733

71 °C

?36 °C

36 %

424,44

1,179

11,64 M

-1,1

1,99

2,46

14,100

61 °C

?30 °C

38 %

451,82

1,189

12,39 M

-1,1