Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Химия

Водоподготовка. Топливные ресурсы. Полимеризация и феноло-формальдегидные смолы

Тип: контрольная работа
Категория: Химия
Скачать
Купить
Описание метода катионного обмена и этапов технологического процесса водоподготовки. Назначение и описание принципа работы деаэратора. Изучение классификации топливно-энергетических ресурсов. Получение феноло-формальдегидных смол и методы полимеризации.
Краткое сожержание материала:

Размещено на

19

Размещено на

1

Федеральное агентство по образованию

Волжский политехнический институт (филиал)

Волгоградского государственного технического университета

Кафедра «Химия и общая химическая технология»

Контрольная работа

По дисциплине «Технология химического производства»

Тема: Водоподготовка. Топливные ресурсы. Полимеризация и феноло-формальдегидные смолы

Содержание

1. Водоподготовка

2. Классификация топливно-энергетических ресурсов

3. Технические методы проведения полимеризации

4. Получение, свойства и применение феноло-формальдегидных смол

1. Водоподготовка

Вода из городского водопровода содержит растворённые соли и газы. Накипь на стенках котлов образуется в результате выпадения растворённых в воде жёсткости - кальция и магния. Накипь на стенках котлов понижает коэффициент теплопередачи и, следовательно, ведёт к перерасходу топлива. В топочной части слой накипи может вызвать перегрев стенки и аварию котла. Растворённые в воде газы - кислород и углекислота - вызывают коррозию стенок котла. В паровой котельной умягчается исходная добавочная вода и деаэрируется вся питательная.

Для умягчения воды применяют метод катионного обмена. Умягчить воду, т.е. снизить её жёсткость, это значит удалить из неё накипеобразователи. Рекомендуемый метод катионного обмена используют в качестве натрий-катионирования, водородно-натриевого катионирования и аммоний-натриевого катионирования при докотловой обработке воды, когда большинство солей жёсткости переводят в соли с большой степенью растворимости, причём никаких осадков не образуется.

Такие соли даже при большом их количестве в составе котловой воды не будут доходить в растворе до состояния насыщения и, следовательно, выпадать кристаллами накипи на стенки котла.

Таким образом, химическая водоподготовка не избавляет воду от солей, но изменяет их количество и качество, что позволяет при правильно организованном режиме эксплуатации избавиться от накипи. В данной котельной установке применено двухступенчатая схема Na - катионирования. Фильтр Na - катионирования выбирается по расходу химически очищенной воды, рассчитанный в тепловой схеме: Gхов= 8,03 т/ч. Описание работы Na - катионитовой установки.

По теории электролитической диссоциации молекулы некоторых веществ, находящихся в водном растворе, распадаются на положительно и отрицательно заряженные ионы - катионы и анионы.

При Na - катионировании, растворённые в воде соли кальция (Ca) и магния (Mg) при фильтрации через катионитовый материал (NaR) обменивают катионы Ca2+ и Mg2+ на катионы Na+. В итоге получаются только натриевые соли - которые обладают большой степенью растворимости.

Изменение солевого состава воды происходит по следующим формулам:

2NaR + Ca(HCO3)2 = CaR2 + 2NaHCO3

2NaR + Mg(HCO3)2 = MgR2 + 2NaHCO3

2NaR + CaSO4= CaR2 + Na2SO4

2NaR + MgSO4= MgR2 + Na2SO4

2NaR + CaCl2= CaR2 + 2NaCl

2NaR + MgCl2= MgR2 + 2NaCl

R - условно показана сложная формула катионитового материала

В дальнейшем в воде происходит разложение бикарбонатов натрия:

2NaHCO3 = Na2CO3 + СО2

Na2CO3 + Н2О = 2NaОН + СО2

Катионитовым материалом, заполняющий фильтр, является сульфоугль. Его получают после обработки бурого или каменного угля дымящейся серной кислоты. Двухступенчатая схема Na - катионирования.

В фильтр загружен катионитовый материал - сульфоугль.

Подлежащая обработке вода подаётся по трубопроводу на фильтр первой ступени и проходит сверху вниз через слой сульфоугля. После прохождения исходной воды через фильтр первой ступени, вода с жёсткостью 0,5 мг-экв/кг поступает на фильтр второй ступени.

Умягчённая вода (до 0,02 мг-экв/кг) отводится в термический деаэратор по трубе.

На время регенерации катионитовые фильтры поочерёдно выключают из работы. Регенерационный раствор поваренной соли подаётся из бака раствора соли по трубе и сбрасывается в дренаж. Скорость пропускания регенерационного раствора 3 ч 5 м/ч.

Процесс регенерации включает в себя следующие операции:

1. Взрыхление катионита исходной водой происходит снизу вверх.

2. Регенерация катионита происходит сверху вниз.

3. Отмывка катионита исходной водой от продуктов регенерации.

Отмывка Na - катионитового фильтра заканчивается при снижении жёсткости: после Й ступени до 0,5 мг-экв/кг; после ЙЙ ступени до 0,02 мг-экв/кг.

После отмывки фильтр готов к работе в режиме умягчения. При работе в режиме умягчения необходимо следить за: перепадом давления создаваемого фильтром; качеством умягчённой воды; следить за отсутствием катионита в умягчённой воде.

Деаэратор. Описание работы деаэратора

Деаэрацией называется освобождение питательной от растворённого в ней воздуха в состав которого входит кислород (О2) и двуокись углерода (СО2). Будучи растворенными, в воде эти газы вызывают коррозию питательных трубопроводов и поверхности нагрева котла, вследствие чего оборудование выходит из строя.

Термический деаэратор служит для удаления из питательной воды растворённых в ней кислорода и двуокиси углерода путём нагрева воды до температуры кипения. При температуре кипения воды, растворённые в ней газы полностью теряют способность растворяться. Деаэратор состоит из бака-аккумулятора и деаэрированной колонки, внутри которой расположен ряд распределительных тарелок. Внутри бака-аккумулятора расположено барботажное устройство - оно служит для дополнительного удаления растворённых газов путём частичного перегрева питательной воды. За счёт барботажного устройства качество деаэрации улучшается.

Питательная вода поступает в верхнюю часть деаэратора на распределительную тарелку. С тарелки вода равномерными струйками распределяется по всей окружности деаэраторной колонки и стекает через ряд расположенных, с мелкими отверстиями, тарелок.

Пар для подогрева воды вводится в деаэратор по трубе и распределяется под водяную завесу, образующуюся при скитании воды. Пар расходясь во все стороны поднимается вверх навстречу питательной воды при этом нагревая её до температуры 104 оС, что соответствует избыточному давлению в деаэраторе 0,02 ч 0,025 МПа.

Пар для барботажного устройства подводится по отдельной трубе.

При этой температуре воздух выделяется из воды и вместе с остатком не сконденсировавшегося пара уходит через вистовую трубу, расположенную в верхней части деаэраторной колонки непосредственно в атмосферу.

Освобождённая от кислорода и двуокиси углерода и подогретая вода выливается в бак аккумулятор, расположенный под колонкой деаэратора, откуда расходуется для питания котлов.

Во избежание значительного повышения давления в деаэраторе на нём устанавливают два предохранительных клапана, а так же гидравлический затвор на случай образования в нём разряжения.

Деаэратор снабжён водоуказательным стеклом, регулятором уровня воды в баке, регулятором давления и необходимой измерительной аппаратурой.

2. Классификация топливно-энергетических ресурсов

Все минеральные ресурсы по направлению использования подразделяют на три группы:

1. Топливно-энергетические ресурсы (нефть, природный газ, уголь, торф, горючие сланцы, дрова)

2. Метало рудные (руды черных, цветных редких и благородных металлов).

3. Нерудные полезные ископаемые (апатиты, фосфориты, калийные соли, асбест, строительное сырьё)

Рассмотрим более конкретно топливно-энергетические ресурсы. Из общей добычи удельный вес каждого составляет:

- Газ природный 52.0%

- Нефть 33.4%

- Уголь 13.5%

- Торф 0.1%

- Сланцы 0.1%

- Дрова 0.6%

Природный газ - одно из важнейших горючих ископаемых, занимающие ключевые позиции в топливно-энергетических балансах многих государств, важное сырьё для химической промышленности. Почти на 90% он состоит из углеводородов, главным образом метана СН4.Содержит и более тяжёлые углеводороды - этан, пропан, бутан, а так же меркаптаны и сероводород (обычно эти примеси вредны), азот и углекислый газ (они в принципе бесполезны, но и не вредны), пары воды, полезные примеси гелия и других инертных газов.

Энергетическая и...

Другие файлы:

Новые разработки и предложения вискозного волокна
Изучение основных видов сырья вискозного производства. Свойства, применение и переработка целлюлозы. Гуанамино-формальдегидные, дициандинамино-формаль...

Технология получения и свойства мочевино-формальдегидных смол
Первые продукты конденсации мочевины с формальдегидом (карбамидные смолы) были получены еще в 1896 г., но производство мочевино-альдегидных смол налаж...

Топливные и рудные ресурсы Украины
Топливные и минерально-сырьевые ресурсы Украины; нефтяные, газовые и озокеритовые месторождения Карпатского региона; Донецкий каменноугольный бассейн,...

Полиамиды
Полиамиды - высокомолекулярные соединения, относящиеся к гетероцепным полимерам, в основной цепи которых содержатся амидные связи, посредством которых...

Распределение природных ресурсов на суше и в Мировом океане
Невозобновлямые природные ресурсы: топливные, рудные полезные ископаемые, химическое сырье. Исчерпаемые возобновляемые природные ресурсы: земельные, в...