Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Химия

Виды химического катализа

Тип: реферат
Категория: Химия
Скачать
Купить
Общие положения и закономерности катализа. Особенности и значение гомогенного, кислотного и основного катализа. Гомогенно-каталитические реакции, катализируемые комплексными соединениями. Специфика применения ферментативного и гетерогенного катализа.
Краткое сожержание материала:

Размещено на

Содержание

Введение

1. Общие положения и закономерности катализа

2. Гомогенный катализ

3. Кислотный и основный катализ

4. Гомогенно-каталитические реакции, катализируемы комплексными соединениями

5. Ферментативный катализ

6. Гетерогенный катализ

Заключение

Список использованных источников

Введение

Катализом называют явление изменения скорости реакции в присутствии катализаторов. Реакции, протекающие с участием катализаторов, называют каталитическими. Вещества, которые увеличивают скорость химической реакции, оставаясь при этом в результате суммарной реакции в неизменном количестве, называются катализаторами.

Имеется много различных типов катализаторов и много различных механизмов их действия. Катализатор проходит через циклы, в которых он сначала связывается, затем регенерируется, снова связывается и так многократно. Катализатор дает реакции возможность протекать по другому пути, причем с большей скоростью, чем это происходит в отсутствии катализатора. Скорость может возрастать за счет снижения энергии активации, увеличения предэкспоненциального множителя или за счет обоих факторов.

Катализатор одновременно ускоряет и прямую и обратную реакцию, благодаря чему константа равновесия суммарной реакции остается неизменной. Если бы это было не так, то можно было бы сконструировать вечный двигатель, используя катализатор для регенерации вещества

1. Общие положения и закономерности катализа

Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный -- образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества. Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al2O3, TiO2, ThO2, алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO.

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных, существуют катализаторы окисления-восстановления; для них характерно присутствие переходного металла или его соединения (Со+3, V2O5+ , MoO3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным.

Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.

В современной науке и технике часто применяют системы из нескольких катализаторов, каждый из которых ускоряет разные стадии реакции. Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня.

В биохимических реакциях роль катализаторов играют ферменты.

Катализаторы следует отличать от инициаторов. Например, перекиси распадаются на свободные радикалы, которые могут инициировать радикальные цепные реакции. Инициаторы расходуются в процессе реакции, поэтому их нельзя считать катализаторами.

Ингибиторы иногда ошибочно считают отрицательными катализаторами. Но ингибиторы, например, цепных радикальных реакций, реагируют со свободными радикалами и, в отличие от катализаторов, не сохраняются. Другие ингибиторы (каталитические яды) связываются с катализатором и его дезактивируют, здесь имеет место подавление катализа, а не отрицательный катализ. Отрицательный катализ в принципе невозможен: он обеспечивал бы для реакции более медленный путь, но реакция, естественно, пойдёт по более быстрому, в данном случае, не катализированному, пути.

Катализатором может являться один из продуктов реакции. В этом случае реакцию называют автокаталитической, а само явление -- автокатализом. Например, при окислении Fe2+ с помощью Мn04

5Fe2+ + Mn04- + 8Н+ = 5Fe3+ + Мп2+ +4Н20

образующиеся ионы Мn2+ катализируют ход реакции.

Каталитические реакции чрезвычайно распространены в природе. Наиболее удивительными из них являются реакции с ферментами, катализирующие множество реакций в живых организмах. Катализаторы широко применяются в промышленности. Производство азотной и серной кислот, аммиака, получение синтетического каучука и т.д. невозможны без каталитических реакций. Катализаторы применяются при производстве лекарственных веществ: фенацетина, гваякола, гало- генопроизводных ароматических соединений и др. В качестве катализаторов используют оксид Mn(IV), Ni, Со, Fe, А1С13, ТеС13.

Различают гомогенный и гетерогенный катализ, но для любого из них основные закономерности сводятся к следующему:

1. Катализатор активно участвует в элементарном акте реакции, образуя либо промежуточные соединения с одним из участников реакции, либо активированный комплекс со всеми реагирующими веществами. После каждого элементарного акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагирующих веществ.

2. Скорость каталитической реакции пропорциональна количеству катализатора.

3. Катализатор обладает избирательностью действия. Он может изменять скорость одной реакции и не влиять на скорость другой.

4. Катализатор дает реакции возможность протекать по другому пути, причем с большей скоростью, чем это происходит в отсутствии катализатора.

Скорость может возрастать за счет снижения энергии активации, увеличения предэкспоненциального множителя или за счет обоих факторов. Например, термическое разложение ацетальдегида СН3СНО СН4 + СО катализируется парами йода, что вызывает снижение энергии активации на ~55 кДж/моль. Это снижение вызывает увеличение константы скорости примерно в 10000 раз.

5. Катализатор не влияет на положение термодинамического равновесия. Он в одинаковой степени изменяет скорость как прямой, так и обратной реакции.

6. При добавлении некоторых веществ, называемых промоторами, активность катализатора растет; добавление ингибиторов уменьшает скорость реакции.

2. Гомогенный катализ

В гомогенном катализе катализатор представляет собой молекулу или ион, находящиеся в гомогенном растворе. В случае гомогенного катализа катализатор и все реагирующие вещества составляют одну общую фазу.

Главным предположением теории гомогенного катализа является представление о том, что в ходе реакции образуются неустойчивые промежуточные соединения катализатора с реагирующими веществами, которые затем распадаются с регенерацией катализатора:

A + B + K = (A-B-K)* D + K

Скорость этой реакции

v=kncAcBcK

пропорциональна концентрации катализатора, а константа скорости подчиняется уравнению Аррениуса. Данная реакция может протекать в две стадии:

(1)

катализ гомогенный кислотный ферментативный гетерогенный

При этом возможны два случая. В первом скорость распада комплекса на катализатор и исходный продукт значительно больше скорости второй стадии, в которой образуется конечный продукт. Поэтому концентрация комплексов, называемых при таком типе катализа комплексами Аррениуса, мала. Во втором случае скорость распада комплекса соизмерима со скоростью второй стадии. Концентрация промежуточного комплекса значительна и стационарна. Комплексы такого типа называют комплексами Вант-Гоффа.

Второй случай, как более типичный, рассмотрим более подробно. Так как промежуточное соединение АК находится в равновесии с исходными веществами, то скорости прямой (v1) и обратной (v2) реакций (1) должны быть равны. Составив для них кинетические уравнения, получим:

гдек'-- сАК') -- концентрация катализатора, не вступившего в реакцию; сАAK'-- равновесные концентрации вещества А и промежуточного соединения АК соответственно.

Из (2) найдем концентрацию промежуточного соединения:

(3)

Суммарная скорость всего п...

Другие файлы:

Биоорганическая химия ферментативного анализа
В монографии, написанной видными американскими специалистами п области катализа М. Беидером и Р. Бергероном и известным ученым из Японии М. Комиямой,...

Принципы и применение гомогенного катализа
Книга, написанная известными учеными США и Японии, знакомит с основами гомогенного катализа - области, получившей в послед, нее время интенсивное разв...

Проблемы кинетики и катализа. Том 10. Физика и физико-химия катализа
Катализ на полупроводникахКатализ на металлахНекоторые общие вопросы катализаКислотно-основной катализВопросы структурного и энергетического соответст...

Физическая и коллоидная химия
Изложены основы термодинамики, химического и фазового равновесия, теории химической кинетики и катализа, элементы электрохимии, термодинамики поверхно...

Мультиплетная теория катализа. Часть 1
В книги изложены основные положения мультиплетной теории катализаОглавлениеОсновные положения мультиплетной теорииМультиплетная теория и другие теории...