Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Физика и энергетика

Разработка лабораторной работы на тему: "Пирометрические методы измерения температуры"

Тип: курсовая работа
Категория: Физика и энергетика
Скачать
Купить
Понятие и источники теплового излучения, его закономерности. Классификация пирометрических методов и приборов измерения температур. Устройство и принцип работы пирометра типа ОППИР-09, методика проведения его поверки, возможные поломки и их ремонт.
Краткое сожержание материала:

Размещено на

Размещено на

Курсовая работа

Разработка лабораторной работы на тему «Пирометрические методы измерения температуры»

Введение

тепловой излучение пирометр поверка

Пирометры - бесконтактные измерители температуры, принцип действия которых основан на регистрации теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света - по-прежнему являются незаменимыми элементами цепей контроля и управления в целом ряде отраслей промышленности - металлургической, машиностроительной, электронной, химической, медико-биологической и т.д. Уникальность подобных приборов заключается в том, что они позволяют измерять температуру тел в труднодоступных местах, на объектах, опасных для человеческого здоровья, а также температуру объектов, находящихся в движении (струя металла при выпуске из печи или ковша, слиток в процессе проката, лопатка вращающейся турбины). На сегодняшний день, практически, ни одна промышленная отрасль (сталелитейная, нефтеперерабатывающая) не обходится без применения пирометров. Поскольку пирометры принципиально не имеют ограничения верхнего предела измерения и не требуют контакта с объектом, то они применяются для измерения высоких и сверхвысоких температур, для измерения температуры агрессивных сред (жидкий металл, особенно цветной). Термометры при таких измерениях теряют свои метрологические свойства или просто разрушаются.

Применение пирометров предпочтительно в ряде случаев при автоматизации процесса там, где необходим непрерывный контроль температуры, при измерении температуры в быстропротекающих процессах (взрыв, вспышка, импульсный нагрев), так как постоянная времени фотоэлектрических приемников излучения чрезвычайно мала и это делает пирометрический контроль практически безынерционным.

И, наконец, пирометры необходимы в тех случаях, когда недопустимо искажение температурного поля объекта, которое может произойти в результате контакта термометра с объектом измерения. Это элементы микросхем, биологические объекты и т.п.

Использование современной элементной базы существенно расширило возможности этих приборов и позволило наделить их новыми свойствами - помимо измерения они могут теперь проводить обработку полученной информации и осуществлять сложные действия по управлению технологическим процессом. Снизился их вес, уменьшились габариты, приборы стали проще и удобнее в эксплуатации. Все это оказалось возможным благодаря применению в приборах новой элементной базы, включающей микропроцессоры.

Перед контактными методами измерения температуры пирометрические обладают следующими преимуществами:

· высоким быстродействием, определяемым типом приемника излучения и схемой обработки электрических сигналов. При использовании квантовых приемников излучения (фотодиодов) и быстродействующих аналогово-цифровых преобразователей (АЦП) постоянная времени может составлять 10-2-10-6 с;

· возможностью измерения температуры движущихся объектов и элементов оборудования, находящихся под высоковольтным потенциалом;

· отсутствием искажения температурного поля объекта контроля, что особенно актуально при измерении температуры материалов с низкой теплопроводностью (дерево, пластик и др.), а также риска повреждения поверхности и формы в случае мягких (пластичных) объектов;

· возможностью измерения высоких температур, при которых применение контактных средств измерения либо невозможно, либо время их работы очень невелико;

· возможностью работы в условиях повышенной радиации и температуры окружающей среды (до 250°С) при разнесении приемной головки и электроники пирометра с помощью оптоволоконного кабеля.

1. Тепловое излучение

1.1 Источники теплового излучения

Наряду с контактными методами для измерения температуры можно использовать и тепловое излучение, так как известно, что различные свойства (параметры) теплового излучения нагретых тел зависят от их температуры.

Тепловое излучение - это свечение вещества, обусловленное тепловым движением - кинетической энергией его частиц. Так как тепловое движение неустранимо (оно прекращается только при температуре, равной абсолютному нулю, но такая температура, как известно, недостижима), то и тепловое излучение вещества, его свечение, имеет место всегда. Физический механизм этого излучения зависит от температуры и агрегатного состояния вещества. При низких температурах (Т< 500-600 К) излучение обусловлено колебательно-вращательным движением молекул, а также колебаниями атомов или ионов, составляющих твердое тело. Частота таких колебаний лежит в инфракрасной области излучения. С ростом температуры тела его энергия становится достаточной, чтобы перевести атомы или молекулы в возбужденные электронные состояния. Энергия излучения из этих состояний значительно больше, чем колебательно-вращательная, поэтому с увеличением температуры весь спектр теплового излучения смещается в сторону более коротких длин волн, т.е. в видимую область. Механизм теплового излучения металлов имеет свои особенности. В металлах есть много свободных, т.е. принадлежащих не отдельным атомам, а всей металлической решетке, электронов. При нагревании средняя скорость движения этих электронов растет. Но поскольку «свободные» электроны движутся в металлической решетке, то они периодически сталкиваются с ее атомами, тормозятся и, как всякая заряженная частица, движущаяся с ускорением (в данном случае - отрицательным), излучают электромагнитные волны. Понятно, что кроме этого металл при нагревании излучает также за счет колебательно-вращательного и электронного движений составляющих его атомов (ионов). В процессе излучения тело теряет энергию и охлаждается. Для поддержания постоянной температуры необходим приток энергии извне - за счет поглощения внешнего излучения или тепла от окружающей среды, путем нагрева электрическим током и т.д. При постоянной температуре излучающее тело и окружающая среда находятся в состоянии термодинамического равновесия, которое является основной отличительной чертой теплового излучения. Приведенная здесь сильно упрощенная схема механизма теплового излучения не учитывает многих его особенностей. Однако, независимо от природы температурно-излучающего вещества были экспериментально установлены следующие качественные закономерности:

а) при любой температуре Т > 0 К все тела излучают электромагнитные волны;

б) интенсивность излучения не зависит от свойств окружающей cреды и определяется только температурой данного тела;

в) c повышением температуры растет доля энергии теплового излучения, приходящаяся на область коротких длин волн. При низкой (например, комнатной) температуре излучение практически ограничено лишь очень длинными инфракрасными невидимыми волнами. По мере нагревания окраска тела начинает меняться, становясь сначала красной, а затем белой, что указывает на смещение максимума излучения в коротковолновую область спектра;

г) тепловое излучение в отличие от других видов излучения (люминесценции, рассеяния, отражения, тормозного, лазерного) является равновесным, т.е. это электромагнитное излучение тела, находящегося в состоянии термодинамического равновесия со средой.

1.2 Законы теплового излучения

Тепловое излучение нагретого тела может разными способами использоваться для измерения температуры. В данной работе применяется один из этих способов, имеющий наибольшее практическое применение. В основу описанного метода положено сравнение яркости нагретого тела с яркостью абсолютно черного тела в том же спектральном интервале. Под абсолютно черным телом понимается тело, которое поглощает всю падающую на него лучистую энергию. Такое идеальное тело в природе отсутствует. Модель его может быть представлена в виде небольшого отверстия в замкнутой полости (рис. 1.1). Излучение любой частоты, попав через это отверстие внутрь полости и претерпевая многократные отражения, практически из полости не выйдет. Поэтому малое отверстие, как и «черное тело», поглощает все падающие на него лучи любой длины волны.

Рис. 1.1. Модель абсолютно черного тела.

Для такой модели абсолютно черного тела коэффициент поглощения (отношение поглощаемой энергии к энергии падающего потока) можно принять равным единице. Все физические (реальные) тела по степени поглощения ими лучистой энергии отличаются от абсолютно черного тела и имеют коэффициент поглощения меньше единицы.

Интенсивность теплового излучения можно характеризовать величиной энергетической светимости R - количеством энергии, излучаемой при данной температуре единицей поверхности в единицу времени для всех длин волн. Энергетическая светимость физических тел R отличается от энергетической светимости R0 абсолютно черного тела при данной температуре Т и может быть охарактеризована коэффициентом (степенью) черноты тела е. Этот коэффициент черноты представляет собой дробь, определяющую ту часть энергии, которую составляет излучение данного тела от излучения абсолютно черного тела при той же температуре, т.е. е = R/R0.

Испускательной способностью тела rл называется энергетическая светимость, приходящаяся на узкий спектральный интервал dл, отнесенную к ширине этого интервала

rл =dR/dл.

Обозначая через ел - коэффициент черноты монохроматического излучения тела, аналог...

Другие файлы:

Устройство для измерения температуры в удаленных точках
Температура и температурные шкалы, условия ее измерения. Классификация термометрических свойств. Выпускаемые пирометрические датчики, промышленные уст...

Методы измерения температуры
Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная тем...

Разработка лабораторной работы "броуновское движение"
История открытия броуновского движения, основные закономерности, методы наблюдения. Экспериментальное обоснование формулы Эйнштейн-Смолуховского. Разр...

Прибор для измерения и контроля температуры газовой смеси
Температура и температурные шкалы. Технические термометры электроконтактные. Структурные схемы стабилизированных источников электропитания. Разработка...

Методы измерения температуры. Часть 1
Книга «Методы измерения температуры» представляет собой сборник переводных статей по вопросу, значение которого как при научных исследованиях, так и п...