Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Физика и энергетика

Передача электроэнергии на расстояния

Тип: реферат
Категория: Физика и энергетика
Скачать
Купить
Характеристика электрического тока от его получения до поставки потребителю. Новые виды генераторов и трансформаторов. Анализ физико-механических процессов производства стали в электропечах. Генерирование электрической энергии. Линии электропередачи.
Краткое сожержание материала:

Размещено на http:///

Министерство общего и профессионального образования

ГОУ НПО Свердловской области

Нижнетагильский профессиональный лицей «Металлург»

РЕФЕРАТ

Передача электроэнергии на расстояния

Исполнитель: Бахтер Николай и Борисов Ярослав

Руководитель: преподаватель физики Реддих Людмила Владимировна

Нижний Тагил 2008 год

Содержание

Введение

Глава 1. Электрический ток

Глава 2. Генерирование электрической энергии

2.1 Генератор переменного тока

2.2 МГД-генератор

2.3 Плазменный генератор - плазмотрон

Глава 3. Передача электроэнергии

3.1 Линий электропередачи

3.2 Трансформатор

Глава 4. Энергетика для сталевара

4.1 Производство стали в электрических печах

4.2 Характерные приёмники электрической энергии

Заключение

Список литературы

Введение

Электросетевой комплекс Свердловской области, в том числе и Нижнетагильский энергоузел, на пороге больших преобразований. Во избежание энергокризиса на Среднем Урале правительством Свердловской области были разработаны и приняты основные направления развития электроэнергетики на ближайшие десять лет. Речь идёт прежде всего о строительстве новой генерации, то есть электростанций, вырабатывающих электроэнергию, и о дальнейшем развитии электросетевого комплекса - строительстве и реконструкции подстанции, трансформаторных пунктов и линий электропередачи самого разного напряжения. Ещё в прошлом году у нас была свёрстана и утверждена долгосрочная - до 2012 года, инвестиционная программа - с указанием конкретных объектов электроэнергетики, подлежащих реконструкции, и тех, которые необходимо построить.

До 2001 года в тагильском регионе дефицита энергомощности не было. Но затем наши промышленные предприятия после многих лет кризиса пошли, что называется, в гору, активно начал развиваться средний и малый бизнес, и потребление электроэнергии выросло в разы. На сегодня дефицит энергомощностей составляет по Нижнему Тагилу свыше 51 мегаватта. Это… почти две Вагонки. Но сравнение с Вагонкой условное. На самом деле проблемы дефицита энергомощностей на данное время более всего актуально для центральной части Нижнего Тагила. Построенная сорок лет тому назад подстанция «Красный Камень», от которой, собственно, и зависит энергоснабжение центра города, морально и физически давно устарела и работает на пределе своих возможностей. Новым потребителям приходится, к сожалению, отказывать в подключении к энергосети.

Нижнему Тагилу необходима новая подстанция - ПС «Приречная» напряжением 110/35/6 кВ. по предварительной оценке величина капиталовложений в строительство «Приречной» составит около 300 миллионов рублей. В плане инвестиционной программы Свердловэнерго по Нижнему Тагилу также реконструкция подстанции «Союзная», строительство подстанции «Алтайская» на Вагонке и переключательного пункта «Демидовский» в районе Гальянки, который позволит кардинально улучшить систему энергоснабжения города в целом. Главное событие этого года - подстанция «Старатель», в реконструкцию которой Свердловэнерго вложило 60 миллионов рублей. Ещё одно, тоже значимое, событие 2007 года - ввод нового, второго трансформатора на подстанции «Гальянка».

Началом строительства ЛЭП Черноисточинск - Белогорье напряжением 110 кВ и общей протяжённостью почти 18 километров. Этот объект то же входит в инвестпрограмму Свердловэнерго. Ввод в эксплуатацию новой высоковольтной линии электропередачи позволит сделать более надёжным энергоснабжение не только не только горнолыжного комплекса «Гора Белая», но и всей прилегающей территории - посёлков Уралец, Висим, Висимо-Уткинск и других населённых пунктов. Скажу больше: проектом «Белогорье» предусмотрено ещё строительство новой подстанции «Белогорье» в посёлке Уралец и реконструкция всего сетевого комплекса Уральца, а это не менее 20 километров сетей напряжением 0,4-6 кВ.

Целью нашего реферата мы решили поставить вопрос о передаче электроэнергии не только на расстоянии, но и использовании её как необходимого компонента в сталеваренье, так как наша профессия неразлучно связана с этим электросталеплавильным процессом.

Для достижения данной цели мы решили поставить перед собой несколько важнейших задач: 1) изучить дополнительную литературу, связанную с передачей электроэнергии и электрометаллургией; 2) познакомиться с новыми видами генераторов и трансформаторов; 3) рассмотреть электрический ток от его получения до поставки потребителю; 4) рассмотреть физико-механические процессы производства стали в электропечах.

Первоначально люди не умели сталь и для изготовления различных орудий труда применяли материалы самородного происхождения (медь, золото и метеоритное железо). Однако этих способов было недостаточно для нужд человека. Часто люди искали возможность получить металл из руды, встречающейся на поверхности земли.

И вот на рубеже второго и первого тысячелетий до нашей эры зародился первый этап металлургии. Человечество перешло к прямому получению железа из руды путём его восстановления в примитивных горнах. Поскольку в этом процессе применялось «сырое» дутьё (не подогретый воздух), способ получил название сыродутного.

Второй этап производства стали (XIV-XVIII вв.) характеризовался усовершенствованием горнов, ростом объёма сыродутных печей. Появление водяного колеса и применение его для привода кузнечных мехов позволили интенсифицировать дутьё, повысить температуру в горне печи и ускорить протекание химических реакций.

Третьим этапом явилось изготовление более совершенного и производительного способа получения малоуглеродистого железа в тестообразном состоянии - так называемого пудлингового процесса - процесса передела чугуна в железо на поду пламенной отражательной (пудлинговой) печи.

Четвёртый этап (конец XIX и середина XX в.) характеризуется внедрением в производство четырёх способов получения стали - бессемеровского, томасовского, мартеновского, конвертерного и электросталеплавильного, о котором, кстати, мы бы и хотели рассказать в своём реферате, как пример использования электроэнергии подручным сталевара.

Глава 1. Электрический ток

Соединим проводами электрическую лампочку с электрической батарейкой. Провода, нить лампочки образовали замкнутый контур - электрическую цепь. В этой цепи течёт электрический ток, который разогревает до свечения нить лампы. Что же такое электрический ток? Это направленное движение заряженных частиц.

В батарейке происходят химические реакции, в результате которых на выводе, помеченном значком «-» (минус), накапливаются электроны - частицы вещества, имеющие самый маленький заряд. Металл, из которого сделаны провода и нить лампочки, состоит из атомов, образующих кристаллическую решётку. Сквозь эту решётку могут свободно проходить электроны. Поток электронов по проводникам (так называют вещества, пропускающие электрический ток) от одного вывода батарейки к другому - это и есть электрический ток. Чем больше электронов пройдёт через проводник, тем больше сила электрического тока. Измеряют силу тока в амперах (А). Если по проводнику течёт ток силой в 1 А, то через сечение проводника каждую секунду пролетает 6,24*1018 электронов. Такое количество электронов несёт заряд в 1 Кл (кулон).

Электрический ток в цепи, образованной проводами, нитью лампы и батарейкой, можно сравнить с потоком жидкости, двигающейся по трубам водопровода. Соединительные провода - это участки трубы с большим сечением, нить лампочки - тонкая трубка, а батарейка - насос, создающий напор. Чем больше напор, тем больше поток жидкости. Батарейка в электрической цепи создаёт напряжение (напор). Чем больше напряжение, тем больше ток в цепи. Напряжение измеряют в вольтах (В). чтобы пропустить через лампочку карманного фонаря ток, который заставил бы светиться её нить, необходимо напряжение 3-4 В. В квартиры домов электрическая энергия подводится под напряжением 127 или 220 В, а по линиям электропередачи (ЛЭП) ток передаётся под напряжением в сотни киловольт (кВ). Электрическая энергия, которая выделяется в 1 с (мощность), равна произведению силы тока на напряжение. Мощность при силе тока 1 А и напряжении 1 В равна 1 ватту (Вт).

Не все вещества свободно пропускают электрический ток, например, стекло, фарфор, резина почти не пропускают электрического тока. Такие вещества называют изоляторами, или диэлектриками. Резиной изолируют проводники, из стекла и фарфора изготавливают изоляторы для высоковольтных ЛЭП. Однако даже металлы оказывают сопротивление электрическому току. Электроны при движении «расталкивают» атомы, из которых состоит металл, заставляют их быстрее двигаться - нагревают проводник. Нагрев проводников электрическим током впервые исследовали русский учёный Э. Х. Ленц и английский физик Д. Джоуль. Свойство электрического тока нагревать проводники широко используется в технике. Электрический ток накаляет нити электрических ламп и электронагревательных приборов, плавит сталь в электропечах.

В 1820 г. датский физик Г.-Х. Эрстед обнаружил, что вблизи пров...

Другие файлы:

Передача электроэнергии на дальние расстояния
Изложены технические, экономические и экологические проблемы передачи электроэнергии на дальние расстояния по линиям переменного и постоянного тока. Р...

Передача электроэнергии
Передача электроэнергии от электростанции к потребителям как одна из задач энергетики. Эффективность передачи электроэнергии на расстояние. Тенденция...

Перспективные технологии и возможность их применения
Внедрение высокоэффективных электростанций. Нарастание процесса старения энергетического оборудования. Реконструкция действующих электростанций к 2030...

Беспроводная передача электроэнергии: трудная история становления

Передача и распределеие электроэнергии в примерах и решениях
Пособие предназначено для студентов, обучающихся по направлению электроэнергетика...