Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Физика и энергетика

Определение показателей энергоэффективности

Тип: контрольная работа
Категория: Физика и энергетика
Скачать
Купить
Общие сведения о приборах учета тепловой энергии и теплоносителя. Состав теплосчетчика. Функции, выполняемые тепловычислителем. Способы измерения расхода теплоносителя. Датчики расхода теплоносителя. Погрешность показаний электромагнитных расходомеров.
Краткое сожержание материала:

Размещено на

1. Приборный учет тепловой энергии

1.1 Общие сведения о приборах учета тепловой энергии и теплоносителя

Приборами учета тепловой энергии и теплоносителя называют приборы, выполняющие одну или несколько следующих функций: измерение, накопление, хранение, отображение информации о количестве тепловой энергии, массе (объеме) теплоносителя, температуре, давлении теплоносителя и времени работы приборов.

Для приборов учета тепловой энергии и теплоносителя принято краткое название - теплосчетчики [2].

Теплосчетчик состоит из двух основных функционально самостоятельных частей: тепловычислителя и датчиков (расхода, температуры и давления теплоносителя) (рисунок 1).

Рисунок 1 - Состав теплосчетчика

Тепловычислитель - это специализированное микропроцессорное устройство, предназначенное для обработки сигналов (аналоговых, импульсных или цифровых - в зависимости от типа применяемого датчика) от датчиков, преобразования их в цифровую форму, вычисления количества тепловой энергии в соответствии с принятым алгоритмом (определяемом схемой теплоснабжения), индикации и хранения (архивации) в энергонезависимой памяти прибора параметров теплопотребления (рисунок 2).

Рисунок 2 - Функции, выполняемые тепловычислителем

Датчики расхода - наиболее важный элемент теплосчетчика в смысле влияния на его технические и потребительские характеристики. Именно датчик расхода определяет качество теплосчетчика.

В качестве датчика расхода могут применяться функционально завершенное самостоятельное устройство (расходомер, расходомер-счетчик или счетчик), для которого принято общественное название - преобразователь расхода, либо первичный преобразователь расхода, способный функционировать только совместно с тепловычислителем конкретного типа [2].

В первом случае датчик расхода формирует унифицированный выходной сигнал (импульсный, токовый), который может обрабатываться различными тепловычислителями, чьи входы согласованы с выходными сигналами датчика расхода. Такой комплектацией теплосчетчика в определенной степени обеспечивается унификация приборов учета тепла.

Преобразователь расхода состоит из первичного и вторичного преобразователей расхода. Вторичный преобразователь расхода - это электронный блок, который может быть конструктивно объединен с первичным преобразователем расхода, а может иметь раздельное исполнение. В некоторых случаях вторичный преобразователь расхода является функциональной частью тепловычислителя, причем вторичный преобразователь и тепловычислитель монтируются в одном корпусе и иногда на одной плате [2].

Существуют различные способы измерения расхода теплоносителя (теплофикационной воды), например: электромагнитный, ультразвуковой, вихревой и пр. по способу измерения расхода, реализованному в теплосчетчике, принято кратко называть теплосчетчик электромагнитным, ультразвуковым, вихревым и т.д.

В подавляющем большинстве теплосчетчиков выполняется измерение объемного расхода теплоносителя и последующее вычисление массового расхода на основе данных о температуре и плотности (температура измеряется, плотность вычисляется) [3].

Обычно в качестве датчиков температуры в составе теплосчетчика применяют подобранные по метрологическим характеристикам пары термосопротивлений, которые подключаются к тепловычислителю по двух-, трех-, или четырехпроводной схеме. Тепловычислитель выполняет измерение величины активного сопротивления термосопротивления, компенсацию погрешностей, вносимых линиями связи, и вычисление температуры теплоносителя.

Датчики давления также в незначительной степени влияют на технические и потребительские свойства теплосчетчика, тем более что для большинства практически важных случаев применения теплосчетчика использование датчика давления необязательно. Обязательной является регистрация давления только на источниках тепловой энергии и у потребителей с открытой системой теплопотребления. Обычно датчики давления имеют унифицированный токовый выход 4..20, 0…20 или 0…5 мА, а тепловычислитель - сопрягаемый с ними вход.

Зачастую в тепловычислитель не предусмотрена возможность подключения датчика давления. Если такая возможность существует, следует иметь ввиду, что для питания датчика давления может потребоваться дополнительный источник напряжения, если он не встроен в тепловычислитель [2].

Температура и давление теплоносителя являются исходными параметрами для определения удельной энтальпии теплоносителя.

1.2 Датчики расхода теплоносителя

Для измерения расхода теплоносителя наиболее широкое распространение получили датчики расхода с сужающими устройствами, ультразвуковые, электромагнитные, вихревые и тахометрические датчики расхода.

Датчики расхода с сужающими устройствами или датчики расхода переменного перепада давления используют зависимость перепада давления на сужающем устройстве, установленном в трубопроводе, от расхода.

Эти расходомеры обладают рядом достоинств, основными из которых являются высокая надежность измерений и низкая зависимость качества измерений от физико-химических свойств измеряемой жидкости. Однако эти приборы имеют и недостатки: узкий динамический диапазон, нелинейность характеристик, высокое гидравлическое сопротивление, оказываемое потоку жидкости первичным преобразователем, необходимость демонтажа для ежегодной поверки, сложность эксплуатации, сложный монтаж, требуемые длинные прямые участки трубопровода до и после места установки. Эти недостатки затрудняют применение данных приборов и становятся очевидными в сравнении с преимуществами, создаваемыми применением современных приборов других типов [2].

Принцип действия ультразвуковых датчиков расхода основан на излучении и приеме ультразвукового сигнала и измерении разности времени его распространения по потоку жидкости против него. Измеренная разность времени распространения сигнала пропорциональна средней скорости потока жидкости и ее расходу. Некоторые ультразвуковые водосчетчики имеют портативные переносные модификации, позволяющие проводить оперативные измерения на различных трубопроводах и получать общую информацию о потреблении и распределении теплоносителя.

Ультразвуковые датчики расхода обладают следующими преимуществами: не создают гидравлического сопротивления потоку среды, обеспечивают сравнительно широкий динамический диапазон и высокую линейность измерений, имеют высокую точность и надежность, могут поверяться беспроливными (имитационными) методами без демонтажа с трубопровода.

Для ультразвуковых расходомеров характерны требуемые длинные прямые участки, необходимость выполнения высокоточных линейных измерений при монтаже, чувствительность к «завоздушиванию» среды, чувствительность к состоянию внутренней поверхности трубопровода [2].

Появление многолучевых ультразвуковых расходомеров позволило сократить длину прямых участков в несколько раз, применение измерительных участков, изготовленных в заводских условиях, исключает необходимость выполнения высокоточных линейных измерений непосредственно на трубопроводе, возможность выбора между врезными и накладными датчиками позволяет учесть состояние внутренней поверхности трубопровода.

Ультразвуковые расходомеры для трубопроводов небольших диаметров, как правило, изготавливаются с измерительными участками, на которых установлены врезные первичные преобразователи расхода [3].

Поверка ультразвуковых расходомеров может выполняться имитационным или проливным методами.

Для измерения расхода в трубопроводах большого диаметра следует отдавать предпочтение многолучевым и многоканальным расходомерам, в которых предусмотрена компенсация температурного влияния на скорость ультразвука, возможность применения как накладных, так и врезных датчиков; которые укомплектованы готовыми измерительными участками, имеют максимальное допустимое расстояние между первичным преобразователем и вычислительным блоком расходомера, работоспособны при температуре теплоносителя до 180°С; первичные преобразователи расхода хорошо защищены от действия окружающей среды.

Принцип действия электромагнитных датчиков расхода основан на явлении электромагнитной индукции. При прохождении электропроводящей жидкости через импульсное магнитное поле в ней наводится электродвижущая сила, пропорциональная средней скорости потока жидкости и ее расходу. Как ультразвуковые, так и электромагнитные датчики расхода при измерении не оказывают влияния на измеряемый поток, поскольку не создают препятствий течению теплоносителя [2].

Электромагнитные расходомеры обеспечивают высокую точность измерений (часто применяются в качестве образцовых приборов), практически нечувствительны к загрязнению и физико-химическим свойствам жидкости (единственное ограничение для современных приборов - жидкость должна быть электропроводной с удельной проводимостью не менее 10-5 Ом/м), имеют широкий динамический диапазон (до 200) и способны измерять очень малые расходы, создают минимальное гидравлическое сопротивление потоку, нечувствительны к осесимметричным изменениям профиля распределения скоростей потока, имеют высокое быстродействие, не требуют длинных прямых участков до и после места установки прибора: 4-8 Ду.

Электромагнитные расходомеры в основном применяются на трубопроводах небольшого диаметра (до Ду300).

Другие файлы:

К вопросу энергосбережения и повышения энергоэффективности сложной системы
Сущность понятий энергосбережения и энергоэффективности. Общие для всех стран рекомендации по энергоэффективности. Иерархическая структурная схема эне...

Инновационные пути повышения энергоэффективности России
Значение энергоэффективных инноваций для национальной экономики РФ. Законодательное регулирование энергоэффективности. Современные тенденции и перспек...

Определение класса энергоэффективности помещения и потенциал энергосбережения при его эксплуатации
Составление энергетического паспорта и определение класса энергетической эффективности исследуемого помещения. Расчет потенциала энергосбережения от с...

Определение технико-экономических показателей, обработка статистического материала
Группировка предприятий по величине основных фондов. Определение дисперсии и среднего квадратического отклонения, показателей ряда динамики; индексов...

Экономика водного транспорта
Подбор типов транспортных судов, определение показателей их использования. Нахождение экономических показателей по расчетным типам судов. Расчет показ...