Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Физика и энергетика

Нелинейные колебания и синхронизация колебаний

Тип: курсовая работа
Категория: Физика и энергетика
Скачать
Купить
Свободные колебания в линейных системах в присутствии детерминированной внешней силы. Нелинейные колебания, основные понятия: синхронизация, слежение, демодуляция, фазокогерентные системы связи. Незатухающие, релаксационные и комбинированные колебания.
Краткое сожержание материала:

Размещено на

Размещено на

Министерство образования республики Беларусь

Учреждение образования

Брестский государственный университет имени А.С. Пушкина

Физический факультет

Кафедра методики преподавания физики и ОТД

КУРСОВАЯРАБОТА

НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ И СИНХРОНИЗАЦИЯ КОЛЕБАНИЙ

Выполнил студент группы ФИ-51

Пашкевич А.Я.

Научный руководитель:

к. ф.-м. н., доцент Ворсин Н.Н.

Брест, 2012

Оглавление

  • Введение
  • 1. Свободные колебания в линейных системах
    • 1.1 Линейные колебания в присутствии детерминированной внешней силы
  • 2. Свободные колебания консервативных систем с нелинейными восстанавливающими силами
    • 2.1 Свободные нелинейные колебания систем с затуханием и нелинейной восстанавливающей силой
    • 2.2 Различные типы особенностей
    • 2.3 Маятник с трением, пропорциональным модулю скорости
  • 3. Незатухающие и релаксационные колебания
    • 3.1 Качественный анализ уравнения Ван дер Поля
    • 3.2 Связанные нелинейные колебания, регенеративный приемник с привязкой по фазе и принцип синхронизации
    • 3.3 Основные уравнения
    • 3.4 Колебания при большойрасстройке
    • 3.5 Комбинированные колебания постоянной амплитуды
    • 3.6 Электротехнические задачи, приводящие к уравнению Хилла
  • Заключение
  • Список литературы

Введение

Нет ничего удивительного в том, что физик должен уметь находить решение нелинейных задач, поскольку множество явлений, которые совершаются в мире вокруг него, управляются нелинейными зависимостями. В процессе развития математических наук трудности нелинейного анализа мешали формулировке представлений о нелинейных движениях, которые позволили бы глубже понять такие явления.

Если оглянуться назад на историю достижений науки, поражает тот факт, что основные усилия исследователей были сосредоточены лишь на изучении линейных систем и на линейных понятиях. Если в то же самое время бросить взгляд на окружающий нас мир, буквально на каждом шагу сталкиваешься с явлениями, которые нелинейны по своей природе. Линейные представления дают только поверхностное понимание многого из того, что встречается в природе. Чтобы сделать анализ более реалистичным, необходимо достичь более высокого уровня и большей легкости в понимании и использовании нелинейных представлений.

За последние годы получили развитие компьютерные методы анализа, и во многих случаях полагалось, что полученные решения могут дать лучшее понимание проявлений нелинейности. Вообще говоря, обнаружилось, что простой перебор численных решений ведет лишь к чуть большему пониманию нелинейных процессов, чем, например, наблюдение за самой природой, «перемалывающей» решения такой конкретной нелинейной задачи, как погода. Похоже, что наше понимание основывается не на уравнениях или их решениях, а, скорее, на фундаментальных и хорошо усвоенных представлениях. Обычно мы понимаем окружающее, только когда можем описать его посредством понятий, которые настолько просты, что они могут быть хорошо усвоены, и настолько широки, чтобы можно было оперировать ими, не обращаясь к конкретной ситуации. Перечень таких понятий обширен и включает, например, такие термины как резонанс, гистерезис, волны, обратная связь, граничные слои, турбулентность, ударные волны, деформация, погодные фронты, иммунитет, инфляция, депрессия и т. д. Большинство наиболее полезных процессов нелинейны по своему характеру, и наша неспособность описать точным математическим языком такие повседневные явления, как поток воды в водосточном желобе или закручивание дыма от сигареты, частично кроется в том, что мы не желали ранее погрузиться в нелинейную математику и понять ее.

Явление резонанса, как известно, часто встречается в живой материи. Следуя Винеру [3], Сент-ДьердьиАльберт Сент-Дьердьи - известный венгерский биохимик, лауреат Нобелевской премии (1937 г.). С 1947 г. работает в США. Выдвинул ряд теорий мышечного сокращения, не получивших, однако, общего признания. предположил важность резонанса для устройства мышц. Оказывается, что субстанции с сильными резонансными свойствами обычно обладают исключительной способностью запасать как энергию, так и информацию, а такое аккумулирование, несомненно, имеет место в мышце.

Нелинейные колебания, случайные нелинейные колебания и связанные (синхронизированные по фазе) нелинейные колебания составляют самую суть явлений во многих областях науки и техники, например связи и энергетики; ритмические процессы имеют место в биологических и физиологических системах. Биофизик, метеоролог, геофизик, физик-атомщик, сейсмолог - все они имеют дело с нелинейными колебаниями, часто в той или иной форме синхронизированными по фазе. Например, инженер-энергетик занимается проблемой устойчивости синхронных машин, инженер-связист - неустойчивостью временной селекции или синхронизации, физиолог имеет дело с клонусомКлонус (от греческого - сутолока, смятение) - ритмическое сокращение одной или нескольких мышц, возникающее вследствие органического повреждения ЦНС., невропатолог - с атаксией Атаксия (от греческого-- порядок; а -- отрицательная частица) -- расстройство координации тех или иных движений., метеоролог - с частотой колебаний атмосферного давления, кардиолог - с колебаниями, вызванными работой сердца, биолог - с колебаниями, обусловленными ходом биологических часов.

Основная цель дипломной работы - рассмотреть ряд задач теории нелинейных колебаний, связанных с такими основополагающими понятиями, как захватывание (или синхронизация), слежение, демодуляция, фазокогерентные системы связи. Будет сделана попытка дать обзор нелинейных задач, представляющих практический интерес, решения которых записаны в доступной форме. Обзор не является исчерпывающим, но он включает примеры задач, которые служат иллюстрацией основных представлений, необходимых для понимания нелинейных свойств систем фазовой синхронизации. Вопрос о существовании и единственности решений затрагивается лишь поверхностно; основное внимание уделяется методам получения решений.

Рассмотренный материал можно сгруппировать по трем основным темам. Первая тема включает изложение результатов теории линейных колебаний в системах с одной степенью свободы, имеющих постоянные параметры. Этот материал используется как справочный и для сопоставления с результатами, полученными из теории нелинейных колебаний. Вторая тема посвящена легко интегрируемым нелинейным системам, на которые не действуют внешние силы, зависящие от времени. Здесь посредством аппарата фазовой плоскости подробно изучаются свободные колебания нелинейных систем. Приводится краткое изложение теории Пуанкаре об особых точках дифференциальных уравнений первого порядка. Полезность понятия об особой точке иллюстрируется решением ряда физических задач. Наконец, третья тема охватывает колебания вынужденные, самоподдерживающиеся (автоколебания) и релаксационные нелинейные колебания. В частности, будет обсуждено применение теории Ван дер Поля к задачам синхронизации и слежения, а завершит главу рассмотрение уравнения Хилла.

1. Свободные колебания в линейных системах

Представляется ценным и интересным суммировать основные особенности линейных колебаний. Существует ряд причин, чтобы выполнить это здесь. Одна из наших принципиальных задач состоит в сопоставлении линейных и нелинейных методов исследования колебаний. Кроме того, сложилась практика применять, насколько это возможно, терминологию, используемую в линейных задачах, и в нелинейных. Наконец, полезно иметь сводку основных идей и формул линейной теории для удобства ссылок.

Пожалуй, самый простой пример задачи о линейных колебаниях дает простая электрическая схема, состоящая из индуктивности , соединенной последовательно с емкостью и резистором (рис. 1). Механический аналог, изображенный на рис. 1, состоит из тела массой ,прикрепленного к пружине, развивающей усилие (называемое возвращающей силой), пропорциональное смещению тела. Для этой электрической системы, используя закон Кирхгофа, имеем

.(1.1)

Если положить, что тело в механической системе движется в среде, которая оказывает сопротивление, пропорциональное скорости (вязкое трение), то уравнение движения для колебаний механической системы задается соотношением

.(1.2)

По аналогии имеем, что ; ; и, причем токявляется аналогом смещения .

Рис. 1.Линейная электрическая и механическая системы

Полагая пока, что внешняя сила и вводя обозначения

,(1.3)

приводим (1.2) к виду

.(1.4)

Поскольку , колебания, определяемые этим линейным однородным уравнением, называются свободными линейными колебаниями. Общее решение линейного уравнения с постоянными коэффициентами есть линейная комбинация двух экспоненциальных функций:

,(1.5)

где и - произвольные константы, которые определяются начальными условиями, a и являются корнями характеристического уравнения

.(1.6)

Таким образом, и заданы соотношениями

.(1.7)

Если мы хотим представить решение (1.5) в вещественной фор...

Другие файлы:

Колебания - Конспект лекций по общему курсу физики
Гармонические колебания, колебания математического маятника, колебания физического маятника, фазовый портрет маятника, адиабатические инварианты, выну...

Механические колебания
Единый подход к изучению колебаний различной физической природы. Характеристика гармонических колебаний. Понятие периода колебаний, за который фаза ко...

Анализ волнового уравнения и расчет собственных чисел и собственных функций для колебаний давления в трубе при наличии осевого градиента температуры
В различных газо-технических агрегатах часто возникают сильные нелинейные колебания. Обычно возникновение таких колебаний нежелательно, поскольку они...

Гармонические колебания. Сложение колебаний. Биения
Исследование понятия колебательных процессов. Классификация колебаний по физической природе и по характеру взаимодействия с окружающей средой. Определ...

Устойчивость и колебания упругих систем: Современные концепции, парадоксы и ошибки
Рассматриваются избранные вопросы современной механики.В первой части книги рассматриваются вопросы устойчивости упругих и упругопластическ...