Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Физика и энергетика

Выбор напряжений

Тип: контрольная работа
Категория: Физика и энергетика
Скачать
Купить
История развития электроэнергетики. Система напряжений электрических сетей. Определение рационального напряжения аналитическим расчётом. Необходимые для осуществления электропередачи от источников питания к приёмникам электроэнергии капитальные затраты.
Краткое сожержание материала:

Размещено на

Размещено на

Контрольная работа

Электроснабжение промышленных предприятий

Тема 5

Выбор напряжений

Содержание

1. Система напряжений электрических сетей

2. Выбор рационального напряжения на предприятии

3. Определение рационального напряжения аналитическим расчётом

Литература

1.

1. Система напряжений электрических сетей

Структура существующих электрических сетей Единой энергетической системы (ЕЭС) России по используемым номинальным напряжениям сформировалась под влиянием многих объективных и субъективных факторов, а также волевых решений руководства страны.

Напряжения электросетей были стандартизованы в конце 1920 годов, когда вместо многочисленных напряжений и разного рода тока (например освещение осуществлялось на постоянном токе), была введена единая шкала номинальных напряжений: 3, 6, 35, 110 кВ. Предполагалось, что в дальнейшем будет вводиться подобно странам Европы напряжение 220 и 380 кВ, которое в то время считалось предельно возможным.

В довоенный период формировались первичные «энергоузлы», энергосистемы и связи между ними в основном с использованием принятой шкалы. К 1950 году в стране было только пять линий электропередачи 220 кВ, протяжённостью 2,5 тыс. км. В середине 1950 годов для выдачи мощности крупнейших строящихся ГЭС на Волге была выбрана ступень напряжения 400 кВ.

Целесообразность шкалы высших напряжений с шагом 2 обуславливается увеличением пропускной способности линий ВН примерно в 4 раза по сравнению с сетями низшего напряжения (НН). Это позволяет создать более рациональную схему основной сети энергосистемы, в которой от узловых подстанций более высокого напряжения мощность распределяется по четырём-пяти линиям более низкого напряжения. При этом узловые подстанции ВН размещаются на оптимальном расстоянии друг от друга, что обеспечивает рациональное расходование ресурсов и снижение потерь электроэнергии.

При большой разнице напряжений необходимо сооружать подпитывающие подстанции ВН более близко друг от друга и значительно утяжелять сети НН, увеличивая сечение проводов с вытекающими последствиями. В результате линии ВН и НН приближаются по стоимости. Такое развитие системы менее экономично.

Шкала напряжений с шагом 1,5 также менее экономична, поскольку при этом пропускная способность сети ВН всего в два раза выше по сравнению с сетью НН. Поэтому узловая подстанция ВН может обеспечить питание только ограниченного числа линий более низкого напряжения. В связи с этим попытка использовать напряжение 150 кВ в районах с сетью 110 кВ в некоторых энергосистемах, также не удалась.

Шкала с шагом напряжения 2 была нарушена в середине 1950 годов, когда выявилось, что при проектировании первых электропередач 400 кВ были заложены большие запасы по мощности и их можно перевести на 500кВ. Так шаг высших напряжений увеличился до 2,3.

При анализе существующих напряжений того времени было решено, что напряжение 500 кВ слишком высоко даже для крупнейших электростанций, и было принято волевое решение о введении напряжения 330 кВ. Такое напряжение было внедрено в Днепровской, Донбасской, Эстонской, Латвийской и Азербайджанской энергосистемах.

Дальнейшее развитие электроэнергетики, сопровождающееся быстрым ростом электрических нагрузок и концентрацией производства электроэнергии на крупных электростанциях, повлекло за собой объединение энергосистем в регионах и создание крупных энергообъединений. Развитие электрических сетей в каждой системе и на своём ВН невозможно, так как на всех межсистемных линиях требовалась установка дополнительных трансформаторов 220/330 кВ, мощность которых должна была соответствовать пропускной способности линии. Поэтому введение промежуточного напряжения 330 кВ оказалось неудачным решением.

По мере увеличения всё возрастающего электропотребления в середине 1960 годах было предложено ввести напряжение 750 кВ. И началось сооружение широтной магистрали в наиболее загруженном районе страны ОЭС Юга.

Дальнейшее развитие ЕЭС представляло собой проработку и опробование различных сочетаний напряжений (110-220-500кВ, 110-330-750кВ).

В 1970 годах к шкале напряжений 110-220-500 кВ была добавлена следующая ступень 1150 кВ, предназначенная в качестве надстройки над сетью 500 кВ. Обоснованием этому послужили прогноз высокого темпа роста электропотребления на территории всей страны, дальнейшего увеличения единичной мощности агрегатов, создание комплексов АЭС. Исходя из этого, на территории страны предполагалось создание сети сверхвысокого напряжения (СВН) 1150 кВ. Первую электропередачу напряжением 1150 кВ решено было построить по направлению Сибирь-Казахстан-Урал для комплексного её использования: реализации межсистемного эффекта от объединения работы ОЭС Сибири с европейскими энергообъединениями страны. Такая линия была построена, но при опытной эксплуатации было выявлено ряд замечаний технического характера.

После распада СССР часть ВЛ 1150 кВ оказалась на территории другого государства. Кроме этого фактора наложились такие как: общее снижение энергопотребления, прогнозируемый рост мощности электростанций не подтвердился и др. Следовательно, рациональное использование ВЛ 1150 кВ обеспечить в ближайшем будущем не удастся. Поэтому данная линия используется на напряжение 750 кВ.

В настоящее время можно утверждать, что электрические сети России были ориентированы на другие условия ЕЭС. Сейчас, перспектива развития ЕЭС России связана с рациональным выбором используемых напряжений в системообразующей сети.

2. Выбор рационального напряжения на предприятии

При проектировании системы электроснабжения предприятия наряду с выбором схемы электроснабжения, включает в себя и выбор рационального напряжения, поскольку их значениями определяются параметры ЛЭП и выбираемого электрооборудования подстанций и сетей.

Необходимые для осуществления электропередачи от источников питания к приёмникам электроэнергии капитальные затраты К зависят от передаваемой мощности S, расстояния l между источником питания и местом потребления.

Капитальные затраты на сооружение системы электроснабжения можно найти:

К=Кл+Коб+Кд.в, (5.1)

электроэнергетика напряжение источник приёмник

где Кл - капитальные затраты на сооружение линий (ВЛ или КЛ), Коб - капитальные затраты на установку оборудования, Кд.в - дополнительные капитальные вложения в источники электроэнергии на покрытие потерь мощности в системах электроснабжения.

Эксплуатационные расходы складываются из стоимости потерь электроэнергии Сп, стоимости амортизационных отчислений Са и стоимости содержания обслуживающего эксплуатационного персонала Со,п:

Сэ=Сп+Са+Со,п (5.2)

Капитальные затраты изменяются по кривой К=f(U) (рис. 5.1) и имеют свой минимум при определённом значении напряжения, которое можно назвать рациональным по капитальным затратам (Ua). Данные кривые относятся к определённой расчётной мощности и длине линии.

В свою очередь, эксплуатационные расходы изменяются так же по некоторой зависимости Сэ=f(U) и имеют свой минимум ежегодных при напряжении, которое можно назвать рациональным по эксплуатационным расходам (Uб). В общем случае эти напряжения не совпадают.

При использовании стандартного ряда напряжений 6, 10, 20, 35, 110 кВ, как правило, рациональные напряжения совпадают (рис. 5.1.б).

Если пользоваться данными капитальных затрат и ежегодных эксплуатационных расходов, то определение рационального напряжения данной системы электроснабжения при рассмотрении двух вариантов производится:

(5.3)

где Ка, Кб - капиталовложения в вариантах а и б, Са, Сб - ежегодные эксплуатационные расходы в вариантах а и б.

а) б)

Рис. 5.1 Зависимости капитальных затрат и эксплуатационных расходов от напряжения.

электроэнергетика напряжение источник приёмник

Когда число вариантов более двух, для производства расчётов удобнее пользоваться вычислением ежегодных затрат, тогда производится построение зависимости от напряжения. Эту кривую З=f(U) можно описать с помощью интерполяционных полиномов. Большее распространение получили методики Ньютона и Лагранжа.

Рис. 5.2 Определение нестандартного напряжения по кривой годовых затрат

На рис. 5.2. изображена кривая зависимости годовых затрат в функции напряжения, где минимальные затраты соответствуют нестандартному напряжению.

Вопросу нахождения нестандартного напряжения аналитическим путём разработаны эмпирические формулы:

формула Вейкерта

(5.4)

формула Стилла

, (5.5)

где S - полная мощность, Р - активная мощность, l - длина линии.

3. Определение рационального напряжения аналитическим расчётом

При решении задачи о рациональном напряжении, в общем случае, следует предварительно определить нестандартное напряжение, при котором имели бы место минимальные затраты. Зная такое напряжение, можно правильнее выбрать целесообразное стандартное напряжение, применительно к конкретному случаю. Для нахождения нестандартного напряжения пред...

Другие файлы:

Расчет силового трансформатора
Расчет основных электрических величин, линейных и фазных токов и напряжений обмоток высшего и низшего напряжений. Выбор конструкции магнитной системы...

Проектирование привода
Определение общего КПД привода. Выбор материала и определение допускаемых напряжений, проектный расчет закрытой цилиндрической передачи быстроходной с...

Электрическая часть ТЭЦ
Выбор генераторов, трансформаторов и варианта схемы проектируемой станции (ТЭЦ). Выбор и обоснование упрощенных схем распределительных устройств разны...

Проектирование электрической части подстанции 110/35/10 кВ
Выбор электрических схем распределительных устройств всех напряжений. Выбор схемы питания собственных нужд подстанции. Расчёт токов короткого замыкани...

Электроснабжение подстанция 110/10 кВ
Определение электрических нагрузок потребителей. Выбор количества распределительных линий и их трасс. Проверка отклонений напряжений у потребителей. В...