Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Физика и энергетика

Атомные электрические станции: технологическая схема получения электрической энергии. Достоинства, недостатки АЭС

Тип: реферат
Категория: Физика и энергетика
Скачать
Купить
Мировые лидеры в производстве ядерной электроэнергии. Схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Главный недостаток АЭС. Реакторы на быстрых нейтронах. Проект первой в мире плавучей атомной электростанции.
Краткое сожержание материала:

Размещено на

Размещено на

Министерство образования Республики Беларусь

Белорусский национальный технический университет

Энергетический факультет

Кафедра «Электрические станции»

РЕФЕРАТ

по дисциплине «Введение в инженерное образование»

«Атомные электрические станции:

технологическая схема получения

электрической энергии. Достоинства,

недостатки АЭС»

атомная электростанция реактор

Студента группы 106612Д. А. Кулявец

Руководитель А. Г. Сапожникова

Ответственный за нормоконтрольП. И. Климкович

Минск 2012

СОДЕРЖАНИЕ

Введение

1. Атомные электрические станции

2. Технологическая схема получения электрической энергии

3. Достоинства и недостатки

4. Проект атомной станции повышенной безопасности АЭС-92

5. Проект плавучей атомной электростанции в Северодвинске

Заключение

ВВЕДЕНИЕ

Научно-технический прогресс невозможен без развития энергетики. Для повышения производительности труда первостепенное значение имеет механизация и автоматизация производственных процессов, замена человеческого труда машинным. Но подавляющее большинство технических средств механизации и автоматизации (оборудование, приборы) имеет электрическую основу. Особенно широкое применение электрическая энергия получила для привода в действие электрических моторов. Мощность электрических машин различна: от долей ватта (микродвигатели, применяемые во многих отраслях техники и в бытовых изделиях) до огромных величин, превышающих миллион киловатт (генераторы электростанций).

Человечеству электроэнергия нужна, причем потребности в ней увеличиваются с каждым годом. Поэтому важно на сегодняшний день найти выгодные источники электроэнергии, причем выгодные не только с точки зрения дешевизны топлива, но и с точки зрения простоты конструкций, эксплуатации, дешевизны материалов, необходимых для постройки станции, долговечности станций.

Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

1. АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ

Атомная электростанция (АЭС) - установка для производства энергии, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимым персоналом.

Во второй половине 40-х годов, ещё до окончания работ по созданию первой советской атомной бомбы, советские учёные приступили к разработке первых проектов мирного использования атомной энергии, генеральным направлением которого сразу же стала электроэнергетика.

В 1948 годе по предложению И. В. Курчатова и в соответствии с заданием партии и правительства начались первые работы по практическому применению энергии атома для получения электроэнергии.

В мае 1950 года близ посёлка Обнинское Калужской области начались работы по строительству первой в мире АЭС.

Первая в мире АЭС опытно-промышленного назначения мощностью 5 МВт была пущена в СССР 27 июня 1954 года в городе Обнинске. До этого энергия атомного ядра использовалась в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике.

Мировыми лидерами в производстве ядерной электроэнергии являются:

- США;

- Франция;

- Япония;

- Россия;

- Корея;

- Германия.

2. ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

На энергоблоках Ровненской АЭС установлены водо-водяные энергетические реакторы (ВВЭР). Энергоблоки с реактором типа ВВЭР имеют два контура, не сообщающихся между собой.

На рисунке (рисунок 1) показана схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в парогенератор, где нагревает до кипения воду второго контура. Полученный пар поступает в турбины, вращающие электрогенераторы, в которых вырабатывается электрический ток. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.

Рисунок 1 - Схема работы атомной электростанции на двухконтурном

водо-водяном энергетическом реакторе (ВВЭР)

Первый контур включает:

- реактор;

- парогенератор;

- главные циркуляционные насосы;

- компенсатор объёма;

- главные запорные задвижки.

Всё оборудование первого контура установлено в герметических боксах. Теплоносителем и замедлителем нейтронов служит химически обессоленная вода.

Теплоноситель отводит тепло, выделяющееся при делении ядер урана в работающем реакторе, затем прокачивается через активную зону главными циркуляционными насосами и отдает тепло в парогенераторах воде второго контура.

Второй контур - нерадиоактивен, он включает:

- парогенераторы;

- паропроводы;

- паровые турбины;

- сепараторы-пароперегреватели;

- питательные трубопроводы с питательными насосами, деаэраторами и регенеративными подогревателями.

Активная зона реактора состоит из шестигранных тепловыделяющих сборок (кассет), которые собраны из тепловыделяющих элементов (ТВЭЛов).

ТВЭЛ представляет собой стержень из циркониевого сплава, заполненный топливными таблетками двуокиси урана.

Вода первого контура нагревается в реакторе до 3000 С, но не кипит, так как давление, которое поддерживается компенсаторами давления, составляет 12 МПа для ВВЭР-440 и 16 МПа для ВВЭР-1000.

Насыщенный пар, производимый в парогенераторах, подается на турбоустановку, приводящую в действие электрогенератор.

Компенсатор давления - технический сосуд под давлением со специальной конструкцией, обеспечивающей компенсацию изменения объёма воды в замкнутом контуре при её нагревании. Он является конструктивной особенностью двухконтурных реакторов с водой под давлением в качестве теплоносителя (в том числе тяжеловодных), использующихся на атомных станциях, атомных подводных лодках и судах, и рассматривается обычно в составе технологической системы, которая обеспечивает поддержание давления в первом контуре в стационарных режимах и ограничение отклонения давлений в переходных и аварийных режимах реакторной установки.

Компенсатор давления одновременно является системой обеспечения нужного давления и компенсации изменений объёма теплоносителя в первом контуре, поэтому имеет двоякое название - в технической документации и литературе он может называться как компенсатором давления, так и компенсатором объёма.

Помимо воды, в различных реакторах в качестве теплоносителя могут применяться также расплавы металлов: натрий, свинец, эвтектический сплав свинца с висмутом и др. Использование жидкометаллических теплоносителей позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в жидкометаллическом контуре не превышает атмосферное), избавиться от компенсатора давления.

Общее количество контуров может меняться для различных реакторов, схема (рисунок 2) приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор). Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур.

Реактор Большой Мощности Канальный (РБМК) - серия энергетических ядерных реакторов, разработанных в Советском Союзе. Данный реактор - канальный, уран-графитовый (графитоводный по замедлителю), кипящего типа, на тепловых нейтронах; предназначен для выработки насыщенного пара давлением 70 кг/. Теплоноситель - кипящая вода.

Рисунок 2 - Технологическая схема энергоблока с реактором ВВЭР-440

Реакторы на быстрых нейтронах - два натриевых и один водяной контуры, перспективные проекты реакторных установок СВБР-100 и БРЕСТ предполагают двухконтурную схему, с тяжелым теплоносителем в первом контуре и водой во втором.

Реактор на быстрых нейтронах - ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны с энергией превышающей 105 эВ.

В случае невозможности использования большого количества воды для конденсации пар...

Другие файлы:

Общая энергетика
Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение эл...

Производство пара на электрической станции
Место и значение парового котла в системе электростанции. Классификация паровых котлов, их характеристики (паропроизводительность, давление, тип). Тех...

Энергетические проблемы и альтернативные источники энергии
Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, дост...

Технико-экономические показатели ТЭЦ
Полезный отпуск теплоты с коллекторов станции ТЭЦ, эксплуатационные издержки. Выработка и отпуск электрической энергии с шин станции. Расход условного...

Атомные электрические станции
В учебном пособии содержатся сведения о технологическом оборудовании основных производств (цехов) АЭС, о системах безопасности АЭС, принципах их постр...