Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »ПРОГРАММИРОВАНИЕ

Решение задачи нахождения минимума целевой функции

Тип: курсовая работа
Категория: ПРОГРАММИРОВАНИЕ
Скачать
Купить
Нахождение минимума целевой функции для системы ограничений, заданной многоугольником. Графическое решение задачи линейного программирования. Решение задачи линейного программирования с использованием таблицы и методом отыскания допустимого решения.
Краткое сожержание материала:

Размещено на

Введение

Современный этап развития человечества отличается тем, что на смену века энергетики приходит век информатики. Происходит интенсивное внедрение новых технологий во все сферы человеческой деятельности. Встает реальная проблема перехода в информационное общество, для которого приоритетным должно стать развитие образования. Изменяется и структура знаний в обществе. Все большее значение для практической жизни приобретают фундаментальные знания, способствующие творческому развитию личности. Важна и конструктивность приобретаемых знаний, умение их структурировать в соответствии с поставленной целью. На базе знаний формируются новые информационные ресурсы общества. Формирование и получение новых знаний должно базироваться на строгой методологии системного подхода, в рамках которого отдельное место занимает модельный подход. Возможности модельного подхода крайне многообразны как по используемым формальным моделям, так и по способам реализации методов моделирования. Физическое моделирование позволяет получить достоверные результаты для достаточно простых систем.

В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управления различными системами, где основными являются процессы принятия решений на основе получаемой информации.

1. Постановка задачи

минимум целевая функция

Решить задачу нахождения минимума целевой функции для системы ограничений, заданной многоугольником решений в соответствии с вариантом №16 задания. Многоугольник решений представлен на рисунке 1:

Рисунок 1 - Многоугольник решений задачи

Система ограничений и целевая функция задачи представлены ниже:

Необходимо решить задачу, используя следующие методы:

Графический метод решения задач ЛП;

Алгебраический метод решения задач ЛП;

Симплекс-метод решения задач ЛП;

Метод отыскания допустимого решения задач ЛП;

Решение двойственной задачи ЛП;

Метод «ветвей и границ» решения целочисленных задач ЛП;

Метод Гомори решения целочисленных задач ЛП;

Метод Балаша решения булевских задач ЛП.

Сравнить результаты решения разными методами сделать соответствующие выводы по работе.

2. Графическое решение задачи линейного программирования

Графический метод решения задач линейного программирования применяется в тех случаях, когда число неизвестных не превышает трех. Удобен для качественного исследования свойств решений и применяется совместно с другими методами (алгебраическим, ветвей и границ и т. д.). Идея метода основана на графическом решении системы линейных неравенств.

Рис. 2 Графическое решение задачи ЛП

- точка минимума

Уравнение прямой проходящей через две точки A1 и A2 :

АВ: (0;1); (3;3)

ВС: (3;3); (4;1)

CD: (4;1); (3;0)

EА: (1;0); (0;1)

ЦФ: (0;1); (5;2)

при ограничениях:

Решение задачи линейного программирования алгебраическим симплекс-методом

Применение алгебраического метода решения задачи требует обобщения представления задачи ЛП. Исходную систему ограничений, заданную в виде неравенств преобразуют к стандартной форме записи, когда ограничения заданы в виде равенств. Преобразование системы ограничений к стандартному виду включает в себя следующие этапы:

Преобразовать неравенства таким образом, чтобы слева находились переменные и свободные члены, а справа - 0 т.е. чтобы левая часть была больше или равной нулю;

Ввести дополнительные переменные, число которых равно числу неравенств в системе ограничений;

Введя дополнительные ограничения на неотрицательность добавленных переменных, заменить знаки неравенств на знаки строгих равенств.

При решении задачи ЛП алгебраическим методом добавляется условие: целевая функция должна стремиться к минимуму. Если данное условие не выполняется, необходимо соответствующим образом преобразовать целевую функцию (умножить на -1) и решать задачу минимизации. После того, как решение найдено, подставить значения переменных в исходную функцию и посчитать ее значение.

Решение задачи при использовании алгебраического метода считается оптимальным, когда значения всех , базисных переменных - неотрицательно, и коэффициенты при свободных переменных в уравнении целевой функции также неотрицательны. Если эти условия не выполняются, необходимо преобразовать систему неравенств, выражая одни переменные через другие (меняя свободные и базисные переменные) добиться выполнения вышеприведенных ограничений. Значение всех свободных переменных считается равным нулю.

Алгебраический метод решения задач линейного программирования является одним из самых эффективных методов при решении задач небольшой размерности вручную т.к. не требует большого числа арифметических вычислений. Машинная реализация этого метода сложнее, чем, например, для симплекс-метода, т.к. алгоритм решения алгебраическим методом является в какой то степени эвристическим и эффективность решения во многом зависит от личного опыта.

- свободных переменных

Шаг 1.

св.пер. - доп. набор

Из (2)

Анализ

Шаг 2.

св. пер.

Анализ

Шаг 3.

св. пер.

Условия не отрицательности выполнены, следовательно, найдено оптимальное решение.

3. Решение задачи линейного программирования с использованием симплекс-таблицы

Решение: Приведем задачу к стандартному виду для решения с помощью симплекс-таблицы.

Все уравнения системы приведем к виду:

Строим симплекс-таблицу:

В верхний угол каждой клетки таблицы вписываем коэффициенты из системы уравнений;

Выбираем максимальный положительный элемент в строке F, кроме , это будет генеральный столбец;

Для того, чтобы найти генеральный элемент строим отношение для всех положительных . 3/3; 9/1;- минимальное соотношение в строке x3. Следовательно - генеральная строка и =3 - генеральный элемент.

Находим =1/=1/3. Вносим в нижний угол клетки, где находится генеральный элемент;

Во все незаполненные нижние углы генеральной строки вносим произведение значения в верхнем углу клетки на ;

Выделяем верхние углы генеральной строки;

Во все нижние углы генерального столбца заносим произведение значения в верхнем углу на - и выделяем полученные значения;

Остальные клетки таблицы заполняются, как произведения соответствующих выделенных элементов;

Затем строим новую таблицу, в которой обозначения клеток элементов генерального столбца и строки меняются местами (x2 и x3);

В верхний угол бывших генеральных строки и столбца записываются значения, которые до этого были в нижнем углу;

В верхний угол остальных клеток записывается сумма значений верхнего и нижнего угла этих клеток в предыдущей таблице

4. Решение задачи линейного программирования методом отыскания допустимого решения

Пусть дана система линейных алгебраических уравнений:

Можно предположить, что все , в противном случае умножаем соответствующее уравнение на -1.

Вводим вспомогательные переменные:

Вводим так же вспомогательную функцию

Будем минимизировать систему при ограничениях (2) и условиях .

ПРАВИЛО ОТЫСКАНИЯ ДОПУСТИМОГО РЕШЕНИЯ: Для отыскания допустимого решения системы (1) минимизируем форму (3) при ограничениях (2), в качестве свободных неизвестных берем xj, в качестве базисных .

При решении задачи симплекс-методом могут возникнуть два случая:

min f=0, тогда все i обязаны быть равными нулю. А получившиеся значения xj будут составлять допустимое решение системы (1).

min f>0, т.е. исходная система не имеет допустимого решения.

Исходная система:

Используется условие задачи предыдущей темы.

Внесем дополнительные переменные:

Найдено допустимое решение исходной задачи: х1 = 3, х2 = 3, F = -12. Основываясь на полученном допустимом решении найдем оптимальное решение исходной задачи, пользуясь симплекс-методом. Для этого построим новую симплекс-таблицу из таблицы полученной выше, удалив строку и строку с целевой функцией вспомогательной задачи:

<...
Другие файлы:

Минимум функции многих переменных
Методы нахождения минимума функции одной переменной и функции многих переменных. Разработка программного обеспечения вычисления локального минимума фу...

Графическое решение задач линейного программирования
Математическая модель задачи. Построение области допустимых планов. Построение линии уровня целевой функции. Оптимизация целевой функции. Точка контак...

Решение математических уравнений
Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизв...

Двойственные задачи линейного программирования
Геометрический смысл решений неравенств, уравнений и их систем. Определение понятия двойственности с помощью преобразования Лежандра. Разбор примеров...

Определение целевой функции симплекс-методом
Сущность понятия "симплекс-метод". Математические модели пары двойственных задач линейного программирования. Решение задачи симплексным методом: опред...

Св.

Баз.

1

3/8

-1/8

0