Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »ПРОГРАММИРОВАНИЕ

Разработка шагающего робота

Тип: дипломная работа
Категория: ПРОГРАММИРОВАНИЕ
Скачать
Купить
Анализ техники ходьбы по количеству точек опоры шагающих роботов. Обзор существующих конструкций. Функциональная схема устройства. Выбор электронных компонентов. Трёхмерная модель робота и его модулей. Исследование цифровой системы на устойчивость.
Краткое сожержание материала:

Размещено на

Введение

С развитием научно-технического прогресса, внедрением новых технологий в различных областях производства, в том числе вредного и опасного, возникает необходимость в мобильных устройствах специального назначения, способных работать, например, в зоне высокой радиоактивности (при обслуживании ядерных реакторов), при тушении лесных пожаров или в зонах стихийных бедствий.

Наиболее полно этим требованиям, скорее всего, будут отвечать шагающие роботы

Шагающий способ представляет основной интерес для движения по заранее неподготовленной местности с препятствиями. Помимо этого шагающий способ передвижения обладает и большей проходимостью на пересеченной местности вплоть до возможности передвигаться прыжками, преодолевать препятствия и т.п. При шагающем способе меньше разрушается грунт. [2]

Целью данного проекта является разработка шагающего робота. Как природная, так и техногенная среда содержит множество препятствий которые трудно или невозможно преодолевать с помощью традиционных типов движения. Наибольшую сложность представляют препятствия в виде ступенек. Преодолеть такие препятствие становиться возможным благодаря конструкции шагающего робта.

Глава 1. Анализ состояния проблемы

1.1 Анализ шагающего вида движения

Можно заметить, что нет ничего более совершенного, чем природные системы. Их адаптивная способность потрясает. Если касаться только шагающих систем, то видно, что их мобильность значительно выше, чем у созданных человеком транспортных средств.

Человек, совершенствуя природу на базе создания комбинированных шагающих механизмов с другими типами движителей, способен создать более производительные и высоко адаптивные транспортно-технологические машины.

Природа не создала колеса просто потому, что система рычагов более приспособлена для передвижения по естественному грунту. Этому способствуют свойства опорно-двигательного аппарата шагающего движителя: дискретность колеи и наличие нерабочего пространства ног. Под дискретностью колеи понимают прерывистость контакта движителя, в данном случае с поверхностью передвижения. Под рабочим пространством ног понимается пространство, окружающее корпус, точки которого достижимы для опорного элемента шагающего движителя. Эти свойства шагающего движителя позволяют предполагать высокую опорную и профильную проходимость для искусственных шагающих средств передвижения. Кроме сильно пересеченной местности для обычного транспорта непроходимой является и среда, приспособленная для обитания человека: здания с узкими проходами, резкими поворотами, лестничными маршами.

Слепое копирование природных объектов без глубокого изучения их поведения, как правило, не позволяло создать работоспособные конструкции, которые можно было бы использовать в практике: например, лесная машина фирма “Табержек”, робот лаборатории транспортных систем АН СССР. Эти машины не оправдали надежды конструкторов и не показали динамических качеств, характерных для насекомых.

В этом ключе интересно рассмотреть композиционную концепцию построения шагающих роботов, т.к. эта концепция сходна с физиологическими моделями управления движением в живых организмах. Сходство это основано на исследованиях российских ученых, проводимых в Институте проблем передачи информации. Поэтому можно полагать, что композиционная концепция является биологическим подходом в робототехнике.

В соответствии с этой концепцией низший уровень управления локомоционным процессом может быть представлен как результат коллективной работы независимых замкнутых систем автоматического регулирования (регуляторов). Какие-либо связи между отдельными регуляторами (горизонтальные связи) отсутствуют. Иными словами, шагающий робот как единый автомат может быть представлен композицией некоторого количества элементарных, независимо функционирующих автоматов, а локомоционный процесс результатом совместного действия этих автоматов. Каждый автомат решает свою собственную задачу и таким путем вносит свой вклад в формирование локомоционного процесса.

Каждый элементарный автомат представляет собой замкнутую систему автоматического регулирования и управляет только одним суставом. В то же время отдельный сустав в различных фазах цикла движения ноги может управляться несколькими различными регуляторами. Одноименные суставы всех ног управляют одним из параметров походки, например, длиной шага, высотой тела робота относительно опорной поверхности или же скорость передвижения робота. Управление всеми суставами робота осуществляется параллельно, что обеспечивает высокий уровень распределенности системы управления.

Влияние на отдельный автомат действий остальных автоматов представляется как возмущающее воздействие внешней среды. Цель автомата как регулятора состоит в компенсации этих возмущений. Выходной сигнал сенсорной системы, который используется в цепи обратной связи регулятора, содержит в себе также и информацию о действиях других автоматов, так что отдельный автомат воспринимает действия других автоматов посредством сенсорной системы, а не путем каких-либо каналов связи между регуляторами. В этом случае внешняя среда отдельного автомата состоит из остальных автоматов и внешней среды робота в целом.

Желаемые параметры походки робота задаются более высоким уровнем системы управления и остаются постоянными в процессе ритмичной ходьбы. Такой подход к проблеме шагающих роботов существенно упрощает управление локомоционным процессом и делает его более наглядным.

Реализация предлагаемого подхода для построения шагающих роботов может быть достигнута путем решения проблемы сенсорных систем для автоматов. Эта проблема была решена путем применения наборов датчиков, объединенных в сенсорную систему, способную измерять каждый параметр походки.

1.2 Анализ техники ходьбы по количеству точек опоры шагающих роботов

Технику ходьбы шагающих роботов можно разделить по количеству точек опор на две, четыре и шесть. Рассмотрим особенности каждого из них.

Идея прямохождения волнует воображение конструкторов и механиков. При проектировании шагающих роботов, передвигающихся на двух конечностях, исследователи вычленяют две основные проблемы. Во-первых, необходимо добиться, чтобы во время движения аппарат мог какое-то время устойчиво находиться в положении, когда его опорой является только одна конечность. При этом опора должна иметь достаточную прочность, чтобы выдержать всю массу агрегата, а приводы - достаточную мощность, чтобы обеспечивать поступательное движение. Второе - это сложные алгоритмы движения, имитирующие движения человеческого тела даже при обыкновенной ходьбе. Взаимосвязь между движениями отдельных частей двуногого робота, обеспечивающая ему устойчивое движение не только по прямой линии, но и в пространстве.

Обратив свое внимание на четвероногих животных, можно заметить, что при движении они сохраняют равновесие почти исключительно за счет динамической устойчивости. Условием устойчивого равновесия является требование, чтобы при движении центр тяжести такого робота в любой момент находился в пределах воображаемого треугольника, углами которого являются опорные в настоящий момент конечности. Исходя из этого был разработан шагающий агрегат на четырех конечностях, алгоритм движения которого был определен таким образом, чтобы при его движении в любой момент времени в воздухе находилась только одна нога, а корпус имел опору одновременно на три точки и сохранял при этом статическую устойчивость.

Шестиногие шагающие роботы, по-видимому, являются самой многочисленной из всех когда-либо и где-либо разработанных категорий механизмов, способных перемещаться с помощью искусственных ног. Популярность этих роботов в значительной степени обусловлена тем, что проблемы обеспечения статической устойчивости движущихся шестиногих аппаратов решаются относительно просто по сравнению с другими конструкциями. Одной из проблем, которой уделяется существенное внимание при проектировании мобильных шагающих аппаратов, является уменьшение необходимой мощности источников питания и сокращение затрат энергии. Другими словами, необходимо повысить к.п.д. многоногих механизмов, т.е. уменьшить потребляемую мощность и повысить полезную развиваемую мощность. В самом деле, если учесть, что в общем случае каждая из n конечностей имеет две-три степени подвижности и управление каждой из степеней сопряжено с определенными затратами энергии, то очевидно, что сравнение шагающих и колесных транспортных средств по к.п.д. будет далеко не в пользу первых. В связи с этим, по-видимому, главная цель, к достижению которой должны стремиться исследователи сегодня, заключается в создании экспериментальных шагающих аппаратов, способных на практике продемонстрировать сочетание высоких функциональных возможностей с достаточно большой развиваемой мощностью при малых затратах энергии

Моделью с шестью ногами мы сможем продемонстрировать знаменитую походку «треножником», т е. с опорой на три ноги, которую используют большинство существ. На следующих рисунках темный кружок означает, что нога устойчиво поставлена на землю и поддерживает вес существа. Светлый кружок означает, что нога поднята и находится в движении. На Рис 1.1 показано существо в позиции «стояния». Все ноги опираются о землю. Из положения «стояния» существо решает идти вперед.

Для того чтобы сделать шаг, оно поднимает три из своих ног (см. светлые кружки на Рис1.2), опираясь своим весом на три оставшиеся ноги (темные кружки). Заметьте, что ноги, поддерживающие вес (темные кружки), расположены в форме треножника (треугольника).

Другие файлы:

Разработка шагающего робота
Классификация шагающих роботов и обзор существующих конструкций. Выбор профиля ноги робота. Расчет электродвигателя и посадки с натягом, выбор подшипн...

Базовые механизмы управления шагающим роботом
Разработка конструкции исполнительных механизмов платформы шагающего робота. Разработка универсальных контроллеров и системы управления высокого уровн...

Шагающий аппарат
Общее описание, цели и задачи шагающего аппарата, его моделирование с использованием языка SVG. Разметка шагающего аппарата. Вычисление моментов инерц...

Разработка нижнего контура управления змееподобного робота
Существующие разработки змеевидных роботов и их природные прототипы: движение змей в природе, его механизация. Змеевидный робот Кевина Доулинга и Дору...

Моделирование процесса нанесения краски устройством с применением робота Kawasaki
Прямая и обратная задача кинематики и позиционирования захвата манипуляционного робота. Разработка алгоритмов и решений, позволяющих организовать проц...