Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »ПРОГРАММИРОВАНИЕ

Моделювання процесів та апаратів харчової, біо- та хімічної технології в середі FlexPDE

Тип: дипломная работа
Категория: ПРОГРАММИРОВАНИЕ
Скачать
Купить
Основи роботи з пакетом FlexPDE: select, coordinates, variables, definitions, initial values, equations, constraints, extrusion. Оператори і функції програмного пакету. Рівняння руху рідини в циліндричній системі координат. Математичні функції, константи.
Краткое сожержание материала:

Размещено на

Вступ

Потужним інструментом пізнання, аналізу та синтезу нелінійних процесів є метод математичного моделювання, який підтримується різноманітними комп'ютерними системами та пакетами прикладних програм. Досить відомі призначені для вирішення широкого кола завдань системи і пакети: FlexPDE, MathCAD, Matlab, Maple, ChemCAD та інших.

Серед вказаних програмних продуктів особливе місце займає пакет FlexPDE, що підтримує метод кінцевих елементів при моделюванні об'єктів з розподіленими змінними, що описуються нелінійними диференціальними рівняннями з частинними похідними.

У науці і техніці більшість завдань на тому чи іншому рівні складності може бути описано за використанням диференціальних рівнянь в частинних похідних. З цього випливає, що програмний пакет такий, як FlexPDE, може застосовуватися майже в будь-якій галузі науки чи техніки.

Дослідники в різних галузях можуть застосовувати FlexPDE в побудові моделей експериментів або апаратури, оцінюючи або пророкуючи значущість різних ефектів. Різноманітність параметрів або залежностей не обмежена заданими рамками, а може довільно бути аналітично задано.

У техніці FlexPDE може бути використаний для оптимізації проектів, оцінки їх виконання і концептуального аналізу. При цьому важливо відзначити, що одне і те ж програмне забезпечення може застосовуватися для моделювання всіх деталей проекту і немає необхідності залучати додаткові інструменти для оцінки окремих ефектів.

При розробці програмного забезпечення пакет FlexPDE може служити ядром для програм спеціального призначення, в яких необхідне створення моделі кінцевих елементів для системи рівнянь частинних похідних.

Програмний пакет FlexPDE може застосовуватися при вирішенні таких завдань:

стаціонарних задач в електротехніці, механіці і теплотехніці;

нестаціонарних (залежних від часу) завдань в хімії, механіці, теплотехніці, біології, електротехніці, оптиці і акустиці.

Актуальність теми. За останні роки в різних галузях науки, значно зріс інтерес до проблем хаотичної динаміки, зокрема, до - перемішування в'язких рідин за різних умов їх повільного руху. Актуальність досліджень процесів перемішування у в'язких рідинах визначається важливістю цього процесу в навколишньому середовищі і має широке застосування їх в сучасних технологіях.

Теорія в'язкої рідини при малих числах Рейнольдса являє собою один з найважливіших для практики та цікавий з точки зору фундаментальних математичних досліджень розділ гідромеханіки. Фізика нафтових та інших мастильних речовин, проблеми фільтрації, деякі напрямки біо- та геофізики, фізіології і медицини, океанології, екології, хімічної промисловості, гідротехніки - ось далеко не весь перелік галузей науки і техніки при дослідженні проблем яких плідно використовується модель Стокса та гідромеханіка при малих числах Рейнольдса. Велика кількість прикладних проблем говорить про актуальність теоретичних досліджень, що базуються на теорії Стокса.

Мета. Метою дипломної роботи є ознайомлення з особливостями системи FlexPDE та тепло гідравлічними процесами. Розглянути способи моделювання тепло гідравлічних процесів у системі FlexPDE.

Розділ 1. Основи роботи з пакетом FlexPDE

FlexPDE - програма, призначена для побудови сценарних моделей рішення диференціальних рівнянь методом кінцевих елементів, тобто за сценарієм, написаним користувачем, FlexPDE робить операції, необхідні для того, щоб перетворити опис системи диференціальних рівнянь в частинних похідних в модель для розрахунку методом кінцевих елементів, знайти рішення для цієї системи і представити результати в графічній формі. Таким чином, FlexPDE виконує роль обчислювального середовища для вирішення завдань, оскільки в цій програмі знаходиться повний набір функцій, необхідних для вирішення системи диференціальних рівнянь в частинних похідних:

- функції редагування для підготовки сценаріїв;

- генератор сіток кінцевих елементів;

- функції підбору кінцевих елементів при пошуку рішення;

- графічні функції представлення результатів рішення.

FlexPDE не обмежує користувача заздалегідь заданим списком прикладних завдань або видів рівнянь. Вибір виду диференціальних рівнянь в частинних похідних повністю залежить від користувача.

Мова сценарію дозволяє користувачеві описувати математичний апарат його системи диференціальних рівнянь в частинних похідних і структуру області рішень в цілому в природному форматі. Ця форма сценарію має багато переваг.

- Сценарій повністю описує систему рівнянь і область рішень, так що немає ніякої невизначеності відносно того, які саме рівняння вирішуються, що могло б мати місце у разі програми з фіксованим набором прикладних завдань.

- Нові змінні, нові рівняння або нові умови можуть легко додаватися в сценарій по бажанню.

- Багато різних завдань можуть бути вирішені за допомогою однієї і тієї ж програми, так що немає необхідності знову проходити навчання для вирішення кожного нового завдання.

- FlexPDE дозволяє вирішувати системи диференціальних рівняння першого або другого порядку в частинних похідних.

- Система диференціальних рівнянь може бути стаціонарною або залежною від часу.

- За допомогою FlexPDE можна вирішувати завдання про власні значення функцій.

- У рамках одного завдання можуть бути розглянуті стаціонарні і нестаціонарні рівняння одночасно. Число рівнянь в системі визначається потужністю комп'ютера, на якому встановлений математичний пакет FlexPDE.

- Рівняння можуть бути лінійними або нелінійними. Математичний пакет FlexPDЕ вирішує нелінійні системи методом Ньютона-Рафсона.

- Може бути задана будь-яка кількість геометричних областей для вирішення з різними властивостями матеріалу.

FlexPDE - має декілька модулів, для забезпечення рішення завдань:

- Модуль редагування сценарію, надає засоби для редагування тексту і попереднього перегляду графічного результату.

- Аналізатор запису рівняння у вигляді символів, який перетворить інформацію, записану у виді символів рівняння в набір змінних, параметрів і їх співвідношень, знижує порядок інтеграції. Потім розкладає ці рівняння в матрицю Якобі.

- Модуль генератора сітки будує сітку трикутних кінцевих елементів в двовимірній області рішень. При рішенні тривимірних завдань двовимірна сітка перетвориться в тетраедр, перекриваючу довільну кількість неплоских шарів.

- Модуль чисельного аналізу кінцевого елементу здійснює вибір відповідної схеми рішення для завдань стаціонарних, нестаціонарних і пошуку власних значень, причому для лінійних і нелінійних систем застосовуються окремі процедури розрахунку.

- Процедура оцінки похибки оцінює міру наближення сітки і уточнює координати сітки в областях, де похибка велика. Система здійснює ітеративне уточнення параметрів сітки і рішення до тих пір, поки не досягається заданий користувачем рівень похибки.

- Модуль графічного виводу приймає довільні алгебраїчні функції з отриманого рішення і здійснює побудову графіків контуру, поверхні і вектора.

- Модуль зовнішнього виведення даних надає можливість друку звітів у вигляді багатьох форматів, включаючи таблиці чисельних значень, ці сітки кінцевих елементів.

У пакеті FlexPDE є програма-редактор, за допомогою якої можна створити сценарій для даного завдання. Цей сценарій можна відредагувати, запустити розрахунок, знову відредагувати і знову зробити розрахунки, поки результат не задовольнить усім вимогам користувача. Далі сценарій можна зберегти в виді файлу для подальшого використання або в якості основи для подальших модифікацій.

Найпростіший шлях до постановки завдання полягає в копіюванні рішення для аналогічних завдань, які вже є у користувача. У будь-якому випадку, слід визначити чотири основні складових етапу розробки сценарію:

1) змінні і рівняння;

2) область рішень і граничні умови;

3) властивості параметрів;

4) в якому графічному виді має бути представлене рішення.

При постановці будь-якого завдання для FlexPDE рекомендується наслідувати деякі загальні правила:

- Розпочніть з фундаментальних законів для цієї фізичної системи. Формульний запис основних законів збереження зазвичай працює краще, ніж псевдоаналітичні спрощення.

- Розпочніть з простої моделі, переважно з тієї, для якої відповідь відома. Це дозволяє, з однією сторони, перевірити своє розуміння завдання і, з іншого боку, відчути упевненість в можливостях пакету FlexPDE. Корисно буває узяти аналітичне рішення і, користуючись FlexPDE, розрахувати значення початкових параметрів, при яких це рішення досягається. Слід взяти до уваги відповідні граничні умови.

- Слід задавати умову графічного виводу в усіх випадках, коли воно може допомогти в ході вирішення. Якщо побудувати графік тільки для кінцевого значення, то буде складно визначити, на якому етапі розрахунків відбулася помилка. Постійний контроль змін в ході рішення за допомогою графіків буває зручним.

Робота в FlexPDE розпочинається із запуску робочого вікна редактора. При запуску FlexPDE з головного меню Windows відкривається основне ро...

Другие файлы:

Основи роботи з пакетом FlexPDE
Методичні, математичні та інформаційні аспекти застосування методу кінцевих елементів і пакету прикладних програм FlexPDE, моделювання тепло-гідравліч...

Технології хімічної промисловості
Розгляд хіміко-технологічних процесів і технології хімічних продуктів. Ефективність хіміко-технологічного процесу, яка залежить від раціонального вибо...

Хімічна технологія. Частина 1
В підручнику на основі нової програми розглядаються загальні питання та основні закономірності хімічної технології, наводиться коротка історія розвитк...

Розрахунок реактора
Донедавна в розвитку хімічної промисловості переважаючу роль грала розробка принципово нових технологічних процесів. Виникали нові й удосконалювалися...

Моделювання систем
Моделювання як наука. Типові математичні схеми моделювання систем. Статистичне моделювання систем на ЕОМ. Технології та мови моделювання. Методи іміта...