Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Наука и техника

Какие оценки возраста Вселенной и Земли даёт метод ядерной хрономерии ?

Тип: статья
Категория: Наука и техника
Скачать
Купить
Какие оценки возраста Вселенной и Земли даёт метод ядерной хрономерии ? В.С.Ольховский В данной публикации приводится краткий обзор метода ядерной хронометрии с использованием долгоживущих альфа- и бета- радиоактивных ядер-хронометров с известными периодами полураспада свыше миллиарда лет (в основных состояниях) по определению длительностей астрофизических, космологических и геофизических процессов. При этом особое внимание обращается на то, что оценки возраста вселенной в 10-20 млрд. лет и возраста земли в 5-10 млрд. лет получены при учете распадов радиоактивных ядер только из основных их состояний. В то же время известно, что в результате процессов нуклеосинтеза образуются ядра-хронометры не только в основном, но и в возбужденных состояниях. Из возбужденных состояний эти радиоактивные ядра распадаются по нескольким каналам, включая гамма-распад с типичными периодами полураспада порядка 10-9 сек. и менее, причем периоды полураспада по отношению к каналу альфа- или бета- распада или спонтанного деления оказываются также на много порядков меньшими миллиарда лет (хотя точные значения их в большинстве случаев пока еще наукой не установлены). С учетом самых последних опубликованных авторских научных результатов приводятся также данные, свидетельствующие о том, что в больших массах звездного, планетного и метеоритного вещества из-за цепочек последовательных излучений и поглощений гамма- квантов часть радиоактивных ядер при всех реальных температурах (выше 0°С) всегда находится в возбужденных состояниях. В свою очередь, учет присутствия возбужденных состояний радиоактивных ядер неизбежно приводит к уменьшению оценки длительностей распада ядер-хронометров. Поэтому учет только основных состояний радиоактивных ядер в методе ядерной хронометрии дает только верхний предел возможных измерений, который может быть весьма далеким от реальности. В рамках приведенной в последних авторских публикациях модели показано, что реальное значение длительности может в 106 и более раз быть меньше верхнего предела. Эти результаты означают необходимость пересмотра отношения к надежности оценки возраста вселенной и земли обычным до сих пор методом ядерной хронометрии, не учитывающим роль гамма-распадов возбужденных состояний в больших массах вещества. Для сторонников креационной теории это, в свою очередь, означает, что более корректные оценки возраста вселенной и земли вполне могут дать величину порядка нескольких тысяч лет вместо обычно приводимых величин в несколько миллиардов. Обычный метод ядерной хронометрии процессов с длительностями свыше миллиарда лет В известном методе ядерной хронометрии в качестве хронометров для измерений длительностей астрофизических, космологических и геофизических процессов различных масштабов (вплоть до возраста всей вселенной) используется широкий набор долгоживущих радиоактивных ядер, а более точно, цепочек последовательных распадов всех промежуточных ядер, начинающихся с распадов этих ядер и заканчивающихся стабильными ядрами. Наиболее крупномасштабные часы "сконструированы" из следующих наиболее долгоживущих изотопов: бета-радиоактивных 40K, 87Rb, 176Lu и 187Re (с периодами полураспада 1.3109, 4.71010, 2.61010 и 4.31010 лет в основных состояниях и конечными стабильными ядрами 40Ar, 87Sr, 176Hf и 187Os соответственно) и альфа-радиоактивных 232Th и 238U(с периодами полураспада 1.41010 и 4.5109лет в основных состояниях и конечными стабильными ядрами 208Pb и 206Pb соответственно). Основной принцип техники ядерной хронометрии состоит в измерении изотопных отношений в земных скалах, метеоритных осколках и т.д., которые меняются с течением времени из-за распада долгоживущих радиоактивных ядер. Конкретная схема процедуры определения возраста исследуемого образца состоит в следующем. Изменение количества (или массы) распадающихся исходных ядер P(t-to) с течением времени, т.е. в зависимости от t-to, где to обозначает момент времени формирования образца, описывается известной экспоненциальной формулой (1) P(t-to) = P(0) exp[-(t-to)/t], где t-их среднее время жизни, связанное с периодом полураспада T1/2соотношением t=T1/2/ln2. Исходные радиоактивные ядра после распада переходят в стабильные конечные ядра, количествo (или массy) которых обозначим через D(t-to). Сумма P(t-to) и D(t-to), очевидно, со временем не меняется, т.е. (2) P(t-to)+D(t-to) = P(0)+D(0), откуда прямо следует следующее соотношение (3): P(0){1- exp[-(t-to)/t]} - D(t-to) + D(0) = 0 или (3а) P(t-to){ exp[(t-to)/ t]-1} - D(t-to) + D(0) = 0. Далее равенство (3а) делится на количество (массу) Dxдругого изотопа стабильного конечного ядра, такого, который не получает вклада при распаде исходных ядер (т.е. Dxне зависит от времени). В результате (3а) переходит в соотношение (3b) p(t-to){exp[(t-to)/t]-1} - d(t-to) + d(0) = 0, где p=P/Dx и d=D/Dx. Измеряя p=P/Dx и d=D/Dx в различных образцах (или в различных частях одного и того же образца), мы получим в плоскости переменных p=P/Dx , d=D/Dx график (3б) в виде прямой линии, наклон которой к оси p позволяет просто определить возраст t-to. Каждая из таких систем-хронометров с различными исходными и конечными ядрами имеет различную чувствительность к перераспределению элементов. А в изучении характера эволюции и возраста солнечной системы и всей вселенной используется сочетание разных типов хронометров. Что до недавнего времени не учитывалось в методе ядерной хронометрии ? Космическая ядерная хронометрия включает в себя по необходимости также анализ процессов формирования исходных долгоживущих радиоактивных ядер. Однако оценка длительностей процессов нуклеосинтеза сильно зависит от выбираемых моделей собственно нуклеосинтеза и астрофизических процессов, на основе которых идет нуклеосинтез. До недавнего времени во всех известных методах ядерной хронометрии учитывались времена жизни только основных состояний распадающихся долгоживущих ядер. Но в процессах радиационного захвата нуклонов, участвующих на заключительных стадиях нуклеосинтеза тяжелых долгоживущих элементов, образуются не только основные состояния, но и все возможные возбужденные состояния синтезируемых ядер. По современным данным ядерной физики известно, что альфа- и бета-распады ядер из возбужденных состояний происходят гораздо более быстро, чем из основных состояний. Иногда времена жизни таких распадов достигают величин 10-9 сек. и мене...
Другие файлы:

Избранные методы ядерной астрофизики
Книга посвящена отдельным вопросам ядерной физики и ядерной астрофизики легких атомных ядер и процессов с ними при низких и сверхнизких энергиях. Прив...

Климатические и биологические последствия ядерной войны
В книге приводятся новейшие научные данные о концепции "ядерной ночи" и "ядерной зимы". Раскрывается особая опасность долговременных глобальных послед...

Особенности формирования научного мировоззрения учащихся при изучении эволюции Земли в рамках дисциплин естественно-научного цикла
Обзор и анализ существующих школьных программ по изучению темы "Эволюция Земли и Вселенной". Модели происхождения Земли. Начало круговорота воды в при...

Модель Большого взрыва
Сущность и содержание теории Большого взрыва, история и основные этапы ее развития, место в естествознании. Описание соответствующей модели, этапы и н...

Рождение и развитие Вселенной
Учение о Вселенной как о едином целом. Охваченная астрономическими наблюдениями область Вселенной (Метагалактика). Гипотетическое представление о Всел...