Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Наука и техника

Проблема исследования времени

Тип: реферат
Категория: Наука и техника
Скачать
Купить
Проблема исследования времениАмиран Хускивадзе1. Краткая история становления современных представлений о времени по С. ХокингуНиже изложена краткая история становления понятия «Время». Точнее, она представляет собой набор цитат, заимствованных из замечательной книги С. Хокинга «Кратная история времени» [1].Великих мыслителей издавна беспокоили вопросы: Откуда взялась Вселенная? Было ли у Вселенной начало, и если было, то, что происходило до этого? Как вообще Вселенная устроена?Найти ответы на эти вопросы старался греческий философ Аристотель еще в 4-м веке до нашей эры.Аристотель полагал, что центром Вселенной является Земля, которая, со своей стороны, представляет собой круглый неподвижный шар. Солнце, Луна, планеты и звезды обращаются вокруг нее по круговым орбитам.Птолемей во II веке нашей эры развил идею Аристотеля в полную космологическую модель. Он, как и Аристотель, считал, что Земля стоит в центре Вселенной. Но, в отличие от Аристотеля, он полагал, что Земля окружена восемью сферами, несущими на себе Луну, Солнце и пять известных тогда планет: Меркурий, Венеру, Марс, Юпитер и Сатурн. Сами планеты, считал Птолемей, движутся по меньшим кругам, скрепленным с соответствующими сферами. Это объясняло тот весьма сложный путь, который, как мы видим, совершают планеты. На самой последней сфере располагаются неподвижные звезды, которые, оставаясь, в одном и том же положении относительно друг друга, движутся по небу все вместе как единое целое. Что лежит за последней сферой, не объяснялось, но, во всяком случае, это уже не было частью той Вселенной, которую наблюдает человечество.Модель Птолемей просуществовал до начала 16 века нашей Эры. В 1514 году польский священник Николай Коперник предложил новую модель строения Вселенной. В отличие от Аристотеля и Птолемея Коперник полагал, что центром Вселенной является Солнце, которое стоит неподвижно , а Земля и другие планеты обращаются вокруг него по круговым орбитам. Теория Коперника нашла признание, когда в 1609 г. итальянец Галилео Галилей начал наблюдать ночное небо с помощью только что изобретенного телескопа. Направив телескоп на планету Юпитер, Галилей обнаружил несколько маленьких спутников, или лун, которые обращаются вокруг Юпитера. Это означало, что не все небесные тела должны обязательно обращаться непосредственно вокруг Земли, как считали Аристотель и Птолемей.Идею Коперника поддержал и немецкий астроном Иоганн Кеплер. Правда, Кеплер модифицировал теорию Коперника. Он предположил, что планеты движутся не по окружностям, а по эллипсам. Это совпадало с результатами наблюдений. Но Кеплер, обнаружив почти случайно, что эллиптические орбиты хорошо согласуются с наблюдениями, так и не сумел примирить этот факт со своей идеей о том, что планеты обращаются вокруг Солнца под действием магнитных сил. Объяснение пришло лишь позднее, в 1687 г., когда Исаак Ньютон опубликовал свою книгу «Математические начала натуральной философии». В этой книге Ньютон выдвинул теорию движения материальных тел во времени и пространстве. Он разработал сложные математические методы, необходимые для анализа движения небесных тел и постулировал закон всемирного тяготения. Согласно этому закону всякое тело во Вселенной притягивается к любому другому телу с тем большей силой, чем больше массы этих тел и чем меньше расстояние между ними. Это то самая сила, которая заставляет тела падать на землю. Ньютон показал, что, согласно его закону, Луна под действием гравитационных сил движется по эллиптической орбите вокруг Земли, а Земля и планеты вращаются по эллиптическим орбитам вокруг Солнца. Закон Ньютона позволил с большой точностью предсказать орбиты Земли, Луны и планет. Если бы закон всемирного тяготения был иным, и сила гравитационного притяжения уменьшалась быстрее, чем по закону Ньютона, то орбиты планет были бы не эллипсами, а спиралями, сходящимися к Солнцу. Если же гравитационное притяжение убывало бы с расстоянием медленнее, то притяжение удаленных звезд оказалось бы сильнее притяжения Земли. Позже, чрезвычайно точные наблюдения за планетой Меркурий выявили небольшие расхождения между ее движением и предсказаниями теории тяготения. Общая теория относительности Эйнштейна подтвердила, что «Меркурий должен двигаться немного иначе, чем получается в теории Ньютона». Этот факт, стал одним из решающих подтверждений Общей теории относительности Эйнштейна. Однако, в утверждении этой теории еще большую роль сыграло следующее. Из законов Ньютона следует, что «единого эталона покоя не существует. Вы можете на равных основаниях утверждать, что тело А находится в покое, а тело В движется относительно тела А с постоянной скоростью или же что тело В, наоборот, покоится, а тело А движется. Предположим , например, что мы забыли о том, что наша планета вращается вокруг своей оси и вокруг Солнца. Тогда, сидя в поезде, можно сказать, что земля покоится, а поезд несется на север со скоростью девяносто километров в час или же что поезд стоит на месте, а земля под ним убегает на юг со скоростью 90 километров в час. Если бы в этом поезде кто-нибудь экспериментировал с движущимися телами, то оказалось бы, что все законы Ньютона выполняются. Например, играя в поезде в настольный теннис, вы обнаружили бы, что траектория шарика подчиняется законам Ньютона, как если бы вы играли на неподвижном столе, и вы не могли бы сказать, что именно движется – поезд или земля.Отсутствие абсолютного эталона покоя означает, что невозможно определить, произошли ли некие два события в одной и той же точке пространства, если известно, что они имели место в разные моменты времени. Пусть, например, наш теннисный шарик в движущемся поезде отскакивает от стола вертикально вверх и, падая вниз, ударяется через секунду о стол в той же точке. Тому, кто стоит у железнодорожного полотна, показалось бы, что точки соприкосновения шарика со столом разделены расстоянием в столько метров, сколько прошел поезд за время между подскоками. Следовательно, отсутствие абсолютного состояния покоя означает, что никакому событию нельзя приписать абсолютного положения в пространстве, как это полагал Аристотель. Положение событий в пространстве и расстояния между ними должны быть разными для наблюдателя, едущего в поезде, и для наблюдателя, который стоит рядом с проходящим поездом, и нет никаких оснований считать, что положения, фиксируемые одним из этих наблюдателей, более предпочтительны, чем положения, фиксируемые другим.Таким образом, законы Ньютона указывали на отсутствие абсолютного положения в пространстве или, как его называли, абсолютного пространства. Но Ньютон, как и Аристотель, верили в абсолютное время. Иными словами, Аристотель и Ньютон считали, что временной интервал между двумя событиями можно однозначно измерить и что результат будет одинаков независимо от того, кто производит измерения, лишь бы у измеряющего были правильные часы. Время было полностью отделено от пространства и считалось не зависящим от него. В действительности, как выяснилось позже, такое представление о времени, основанное на «здравом смысле», не всегда справедливо. Точнее, оно относятся к сравнительно малым скоростям , но оно оказывается совершенно неуместно, когда скорости становятся близкими к скорости света.То, что свет распространяется с конечной, хотя и очень большой скоростью, было установлено в 1676 г. датским астрономом Оле Христенсеном Рёмером. Однако настоящей теории распространения света не существовало до 1865 г., когда английский физик Джеймс Кларк Максвелл сумел объединить две частные теории, с помощью которых тогда описывали электрические и магнитные силы. Теория Максвелла предсказывала, что радиоволны и свет должны распространяться с некоторой фиксированной скоростью. Но поскольку теория Ньютона покончила с представлением об абсолютном покое, теперь, говоря о фиксированной скорости света, нужно было указать, относительно чего измеряется эта фиксированная скорость. В связи с этим было постулировано существование некой субстанции, названной «эфиром», которым наполнено все, даже «пустое» пространство. Световые волны распространяются в эфире так же, как звуковые в воздухе, и, следовательно, их скорость – это скорость относительно эфира. Наблюдатели, с разными скоростями движущиеся относительно эфира, должны видеть, что свет идет к ним с разной скоростью, но скорость света относительно эфира должна оставаться при этом неизменной. В частности, коль скоро Земля движется в эфире по своей орбите вокруг Солнца, скорость света, измеренная в направлении движения Земли (при движении в сторону источника света), должна превышать скорость света, измеренную под прямым углом к направлению движения (т. е. когда мы не движемся к источнику). В 1887 г. Альберт Майкельсон и Эдвард Морли поставили в Кливлендской школе прикладных наук очень точный эксперимент. Майкельсон и Морли сравнивали значение скорости света, измеренной в направлении движения Земли, с ее значением, измеренным в перпендикулярном направлении. К своему огромному удивлению, они обнаружили, что оба значения совершенно одинаковы!.С 1887 по 1905 г. был сделан ряд попыток (наиболее известная из которых принадлежит датскому физику Хендрику Лоренцу) объяснить результат эксперимента Майкельсона и Морли тем, что все движу...
Другие файлы:

Склонность студентов к вредным привычкам
Программа социологического исследования. Описание проблемной ситуации. Проблема исследования. Цель исследования. Объект исследования. Метод исследова...

Тайм-менеджмент и его применимость к русскому человеку
Знакомство с авторами, объект и предмет исследования проблемы организации времени. Главная проблема современных менеджеров - боязнь принятия решений....

Методы изучения процессов управления и затрат рабочего времени руководителя
Задачи исследования системы менеджмента на предприятии: повышение производительности труда, снижение затрат на продукцию. Методы исследования процессо...

Чувство времени
Общее представление про понятие времени. Сущность понятия "настоящее". Внутреннее и внешнее время: результаты исследования по механическим и биологиче...

Эксперимент как основной метод психологического исследования
Сущность понятия "идеальный эксперимент", предмет исследования. Отбор, распределение испытуемых по группам. Инструктирование, мотивирование участников...