Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Военное дело и гражданская оборона

Разработка моделей, алгоритмов и расчетное обоснование выбора парашютной системы

Тип: курсовая работа
Категория: Военное дело и гражданская оборона
Скачать
Купить
Схема действия парашютной системы. Тактико-технические требования. Классификация парашютов: грузовые, тормозные, вспомогательные, пристрелочные, людские. Предварительное определение параметров парашютной системы. Траектория системы "груз-парашют".
Краткое сожержание материала:

Размещено на

Введение

В настоящее время парашюты и парашютные системы широко применяются для различных целей: для спасения лётчиков при аварии самолета, спуск на землю людей, подопытных животных и исследовательской аппаратуры с самолётов, ракет и космических кораблей, для торможения самолета при посадке на взлётно-посадочную полосу ограниченного размера, десантирование различных грузов.

С парашютом можно спускать грузы весом и менее 1 кг и в несколько тонн; при этом парашюты можно вводить в действие на скоростях от 5 до 1000 м/сек. Такой широкий диапазон веса грузов и скоростей вызывает необходимость разрабатывать различные конструкции и способу введения в действие парашюты и парашютные системы. При этом должна быть обеспечена необходимая прочность парашютов, воспринимающих при раскрывании значительные нагрузки и подвергающихся в отдельных случаях воздействию высоких температур торможения. Возможность десантирования из самолётов разных грузов определяется в первую очередь разрешающей способностью самолёта. Если самолёт способен поднять и транспортировать груз, а также сбросить этот груз в полёте, то создание парашютной системы для десантирования такого груза не является большой проблемой. Обычно трудности возникают при необходимости обеспечить грузу малую скорость приземления, скорость груза в момент введения парашютной системы в действие, допустимых перегрузок торможения.

Объект исследования: парашютные системы для обеспечения заданных характеристик приводнения радиогидроакустического буя (РГБ), математические модели для описания поведения системы “буй - парашют” при внешних воздействиях, характерных для заданных режимов движения на воздушном участке траектории, при приводнении и проникании буя под поверхность воды.

Цель работы: разработка моделей, алгоритмов и расчетное обоснование выбора парашютной системы из условия обеспечения допустимых перегрузок при раскрытии парашюта после отделения от авиационного носителя и приводнении буя.

Схема действия такой системы представлена на (рис. 1).

Рис. 1. Схема действия парашютной системы

Действие парашютной системы (ПС) может быть разбито на следующие этапы:

1 этап - свободное падение буя с момента его отделения от носителя до введения парашюта в действие. В авиационных системах обычно используется принудительное введение парашюта в действие с помощью вытяжного звена, один конец которого закреплен на носителе, а другой прикреплен к уздечке парашюта буя, находящегося в специальной камере. На первом этапе скорость буя изменяется от скорости носителя Vнос до скорости V1 в момент введения парашюта в действие. Это изменение скорости происходит за счет сопротивления воздуха, действующего на буй, по законам свободного падения тела в воздухе. Продолжительность первого этапа при использовании авиационных буев обычно незначительна и не превышает 1 - 2 с. Иногда этот этап искусственно увеличивают для ускорения процесса постановки или с целью уменьшения скорости движения буя в момент введения парашютной системы в действие. Тогда введение парашюта в действие производится при помощи специального прибора, например, комбинированного авиационного прибора КАП-3.

2 этап - вытягивание из парашютной камеры купола и строп на всю длину. Начинается наполнение купола парашюта воздухом. Скорость системы в момент начала наполнения купола обозначим Vо. Продолжительность 2 этапа зависит от длины купола и строп, скорости буя к концу 1 этапа, высоты и др. Надо отметить, что изменение скорости буя происходит, в основном, за счет сопротивления самого буя (вес системы при этом уменьшается на величину веса парашюта).

3 этап - наполнение купола парашюта воздухом. Скорость снижения системы в процессе наполнения купола быстро изменяется, достигая к концу этапа значения VH - скорости в момент полного наполнения купола. При этом в системе действует максимальная нагрузка. Время наполнения купола воздухом зависит от Vо, конструкции и свойств купола парашюта, в том числе, воздухопроницаемости ткани и др. Процесс наполнения парашюта является резко неустановившемся и трудно поддающимся математическому описанию. В настоящей работе, где проводятся предварительные исследования, этот процесс описывался приближенно, а основной целью такого описания являлась оценка значений коэффициента перегрузок, испытываемых системой «груз-парашют» в момент наполнения парашюта.

4 этап - снижение буя с наполненным куполом. Скорость системы изменяется с VH до Vсн. Установившаяся скорость вертикального снижения из-за увеличения плотности воздуха постепенно уменьшается и перед приводнением достигает величины Vпр.

Выбор параметров парашютной системы определяется тактико-техническими требованиями, основные из которых приведены в таблице 1.

Таблица 1. Основные тактико-технические требования

№ п/п

Тактико-технические требования

Значение параметра

1

Массогабаритные параметры буя

 

 

 

-длина, мм

800

-диаметр, мм

440

-масса, кг

30

2

Авиационные носители-постановщики

самолеты типа ТУ-142 МЗ, ИЛ-38, вертолеты типа КА-27 ПЛ

3

Высота сбрасывания изделия, м:

 

 

 

-минимальная

400

-максимальная

800

4

Скорость носителя в момент сбрасывания, км/час

 

200-750

5

Угол приводнения, град

не более от вертикали

6

Допустимая перегрузка при приводнении, единицы g

100

7

Допустимое переуглубление, м

не более 3

Из условия не превышения допустимых перегрузок определялась максимальная скорость изделия при приводнении. Зная потребное значение скорости и массу изделия, можно определить площадь купола парашюта и другие его параметры.

Классификация парашютов.

По назначению:

* грузовые (однокупольные и многокупольные);

* тормозные;

* вспомогательные (вытяжные, стабилизирующие, поддерживающие);

* пристрелочные;

* людские.

Грузовые парашюты - применяются для десантирования крупногабаритных тяжелых грузов, как правило, военными и спасательными. Грузы (например, боеприпасы и продукты в ящиках, боевые машины десанта с экипажем) закрепляются на грузовой платформе, к которой крепят одно или многокупольную парашютную систему. В однокупольной системе используются один большой по площади купол, в многокупольной (МКС) - несколько (от 2 до 12) небольших. Выброску производят с транспортных самолетов, например Ил-76, через открывающуюся в воздухе рампу. Вытаскивания грузовой платформы из самолета производится с помощью вытяжного парашюта, вводимого воздушным потоком. Грузовые парашютные системы для смягчения приземления используют пороховые ускорители, включаемые непосредственно перед касанием земли и производящие дополнительное торможение. Примеры:

Система МКС-5-128М (рис. 2) предназначена для десантирования грузов массой до 8500 кг из самолётов Ан-12Б, Ан-22 и Ил76. Высота десантирования 8000 м. Скорость снижения с грузом до 8500 кг-до 7,0 м/с. МКС-5-128М состоит из вытяжной парашютной системы ВПС-12130, вытяжным куполом и крестообразным поддерживающим куполом, блока стабилизирующего парашюта с круглым куполом площадью 30 , пяти блоков основных парашютов, звеньев парашютных камер, скоб для соединения звеньев. Стабилизирующий парашют обеспечивает стабильное снижение системы до раскрытия основных куполов.

Однокупольная бесплатформенная парашютно-реактивная система ПРСМ-915 (рис.3) предназначена для десантирования грузов массой 7400 кг. Высота десантирования 500-1500 м. Скорость снижения с грузом 16-23 м/с. В системе используется один 540 мет...

Другие файлы:

Расчетное обоснование выбора парашютной системы
Исследование парашютных систем для обеспечения заданных характеристик приводнения гидроакустического буя. Математические модели для описания поведения...

Разработка системы моделирования наблюдения за группировкой кораблей
Трехмерное моделирование: улучшение алгоритмов рендеринга и просчета трехмерных изображений. Обоснование выбора алгоритмов. Выбор языка программирован...

Разработка математических моделей, алгоритмов и программного обеспечения для выбора предпочтительных мест установки антенн системы спутниковой навигации
Критерий выбора проектных решений мест установки приёмных антенн навигационных систем. Построение алгоритма и математических моделей для оценки показа...

Разработка моделей женских туфель с использованием САПР
Обоснование выбора разрабатываемой модели. Разработка эскизов моделей обуви с использованием компьютерной графики. Проектирование конструктивной основ...

Разработка эскизного проекта цифровой системы передач
Расчет и обоснование параметров кодеков. Формирование цикла передачи. Расчет параметров системы цикловой синхронизации. Обоснование выбора кабеля и ра...