Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Производство и технологии

Техника и технология газовой сварки

Тип: контрольная работа
Категория: Производство и технологии
Скачать
Купить
Особенности процесса газовой сварки. Способы определения мощности газовой горелки, расчет параметров сварочного аппарата. Технология и способы газовой сварки, ее основные режимы и техника выполнения. Описание этапов подготовки кромок и сборка под сварку.
Краткое сожержание материала:

Размещено на

2

Размещено на

Техника и технология газовой сварки

Содержание

газовая сварка

1. Введение

2. Общие сведения

3. Способы сварки

4. Подготовка кромок и сборка под сварку

5. Режимы и техника газовой сварки

6. Пламя

7. Техника безопасности

8. Используемая литература

Введение

Способ газовой сварки был разработан в конце прошлого столетия, когда начиналось промышленное производство кислорода, водорода и ацетилена. В тот период газовая сварка являлась основным способом сварки металлов и обеспечивала получение наиболее прочных сварных соединений. В дальнейшем с созданием и внедрением высококачественных электродов для дуговой сварки, автоматической и полуавтоматической дуговой сварки под флюсом и в среде защитных газов (аргона, гелия и углекислого газа и др.), газовая сварка была постепенно вытеснена из многих производств этими способами электрической сварки. Тем не менее, и до настоящего времени газовая сварка металлов наряду с другими способами сварки широко применяется в народном хозяйстве.

Общие сведения

Сущность процесса газовой сварки заключается в том, что свариваемый и присадочный металлы расплавляются за счет тепла пламени горелки, получающегося при сгорании какого-либо горючего газа в смеси с кислородом. Наиболее распространенным газом является ацетилен. В процессе сварки металл соприкасается с газом пламени, а вне пламени - с окружающей средой, обычно с воздухом. В результате металл подвергается изменениям, характер которых зависит от свойств металла, способа и режима сварки. Наибольшим изменениям подвергается металл, расплавляющийся в процессе сварки. При этом изменяется содержание примесей и легирующих добавок в металле. Одновременно может происходить обогащение его кислородом, в некоторых случаях и водородом, азотом, углеродом. Одним из наиболее распространенных процессов, происходящих при взаимодействии пламени с металлом, является окисление.

При сварке сталей в металле сварочной ванны образуется закись железа FeO, которая реагирует с кремнием и марганцем внутри сварочной ванны; вредные примеси выводятся в шлак, либо удаляются в виде газов. В процессе газовой сварки, кроме расплавления металла сварочной ванны, происходит нагрев и основного свариваемого метала до достаточно высоких температур, приближающихся к температуре плавления на границе раздела со сварочной ванной. Поэтому при сварке одновременно происходит ряд сложных процессов, связанных с расплавлением металла, его взаимодействие с газами и шлаками, последующей кристаллизацией, а также с нагревом и охлаждением металла в твердом состоянии как в пределах шва, так и в основном металле и в зоне термического влияния. Расплавленный металл сварочной ванны представляет сплав основного и присадочного металлов. В результате взаимодействия газов пламени и флюс он изменяет собой состав. По мере удаления пламени горелки металл кристаллизуется в остывающей части ванны. Закристаллизовавшийся металл сварочной ванны образует металл шва. Шов имеет структуру литого металла с вытянутыми укрупненными кристаллами, направленными к центру шва.

Пламя

Для выполнения сварочных работ необходимо, чтобы сварочное пламя обладало достаточной тепловой мощностью. Мощность пламени горелки определяется количеством ацетилена, проходящего за один час через горелку, и регулируется наконечниками горелки. Мощность пламени выбирается в зависимости от толщины свариваемого металла и его свойств. Количество ацетилена в час, необходимое на 1 мм толщины свариваемого металла, устанавливается практикой. Например, при сварке низкоуглеродистой стали на 1 мм толщины свариваемого металла требуется 100--130 дм3 ацетилена в час. Чтобы узнать требуемую мощность пламени, надо умножить удельную мощность на толщину свариваемого металла в миллиметрах.

Пример Для сварки низкоуглеродистой стали толщиной 4 мм минимальная мощность сварочной горелки составит 100 X 4 = 400 дм3/ч, наибольшая -- 130X4 = 520 дч/ч.

Для сварки различных металлов требуется определенный вид пламени -- нормальное, окислительное, науглероживающее. Газосварщик регулирует и устанавливает вид сварочного пламени на глаз. При ручной сварке сварщик держит в правой руке сварочную горелку, а в левой -- присадочную проволоку. Пламя горелки сварщик направляет на свариваемый металл так, чтобы свариваемые кромки находились в восстановительной зоне на расстоянии 2--6 мм от конца ядра. Конец присадочной проволоки должен находиться в восстановительной зоне или в сварочной ванне.

Сварочное пламя образуется при сгорании горючего газа или паров горючей жидкости в кислороде. Пламя нагревает и расплавляет основной и присадочный металл в месте сварки. Наибольшее применение при газовой сварке нашло кислородно-ацетиленовое пламя, так как оно имеет высокую температуру (3150° С) и обеспечивает концентрированный нагрев. Однако в связи с дефицитностью ацетилена в настоящее время получили широкое распространение (особенно при резке металлов) газы-заменители ацетилена -- пропан-бутан, метан, природный и городской газы, водород.

Рисунок 1. Распределение температуры по оси нормального газового пламени

От состава горючей смеси, т. е. от соотношения кислорода и горючего газа, зависит внешний вид, температура и влияние сварочного пламени на расплавленный металл. Изменяя состав горючей смеси, сварщик тем самым изменяет основные параметры сварочного пламени.

Для получения нормального пламени отношение кислорода к горючему газу должно быть для ацетилена 1,1--1,2, природного газа 1,5--1,6, пропана -- 3,5. Все горючие газы, содержащие углеводороды, образуют сварочное пламя, которое имеет три ярко различимые зоны: ядро, восстановительную зону и факел. Водородное пламя ярко различимых зон не имеет, что затрудняет его регулировку по внешнему виду.

При зажигании газовой струи, вытекающей из сопла, пламя перемещается по направлению движения струи газовой смеси. Скорость истечения для каждого газа подбирается такой, чтобы пламя не проникало внутрь сопла горелки и не отрывалось от него. Газ в струе должен прогреваться до температуры воспламенения, ацетилен воспламеняется при температуре 450--500° С, а газы-заменители -- 550--650° С. Поэтому ядро пламени при сгорании газов-заменителей длиннее, чем при сгорании ацетилена.

В зависимости от соотношения между кислородом и ацетиленом получают три основных вида сварочного пламени: нормальное, окислительное и науглероживающее. Нормальное пламя теоретически получают тогда, когда в горелку на один объем кислорода поступает один объем ацетилена. Практически кислорода в горелку подают несколько больше -- от 1,1 до 1,3 от объема ацетилена. Нормальное пламя характеризуется отсутствием свободного кислорода и углерода в его восстановительной зоне. Кислорода в горелку подается немного больше из-за небольшой его загрязненности и расхода на сгорание водорода. В нормальном пламени ярко выражены все три зоны.

Ядро имеет резко очерченную форму (близкую к форме цилиндра), плавно закругляющуюся в конце, с ярко светящейся оболочкой. Оболочка состоит из раскаленных частиц углерода, которые сгорают в наружном слое оболочки. Размеры ядра зависят от состава горючей смеси, ее расхода и скорости истечения. Диаметр канала мундштука горелки определяет диаметр ядра пламени, а скорость истечения газовой смеси -- его длину.

Площадь поперечного сечения канала мундштука горелки прямо пропорциональна толщине свариваемого металла. Сварочное пламя не должно быть слишком «мягким» или «жестким». Мягкое пламя склонно к обратным ударам и хлопкам, жесткое -- способно выдувать расплавленный металл из сварочной ванны. При увеличении давления кислорода скорость истечения горючей смеси увеличивается и ядро сварочного пламени удлиняется, при уменьшении скорости истечения -- ядро укорачивается. С увеличением номера мундштука размеры ядра увеличиваются. Температура ядра достигает 1000° С.

Восстановительная (средняя) зона располагается за ядром и по своему более темному цвету заметно отличается от него. Длина ее зависит от номера мундштука и достигает 20 мм. Зона состоит из продуктов неполного сгорания ацетилена -- окиси углерода и водорода. Она называется восстановительной, так как окись углерода и водорода раскисляют расплавленный металл, отнимая кислород от его окислов Если в процессе сварки расплавленный металл сварочной ванны находится в средней зоне, то сварочный шов получается без пор, газовых и шлаковых включении. Этой зоной пламени и производится сварка Восстановительная зона имеет наиболее высокую температуру (3150°С) в точке, отстоящей на 3--6 мм от конца ядра Схема нормальною ацетилено-кислородного пламени и график распределения температур по его длине, а также состав пламени по зонам.

Зона полного сгорания (факел) располагается за восстановительной зоной. Она состоит из углекислого газа, паров воды и азота, которые образуются в пламени при сгорании окиси углерода и водорода восстановительной зоны за счет кислорода окружающего воздуха. Температура этой зоны значительно ниже, чем температура восстановительной, и колеблется от 1200 до 2500°С

Окислительное пламя получается при избытке кислорода, при подаче в горелку на один объем ацетилена более 1,3 объема кислорода. При этом ядро приобретает конусообразную форму, значительно сокращается по длине, становится с менее резкими очертаниями и приобретает более бледную окраск...

Другие файлы:

Технология сварки трубопроводов
Способы разделки труб перед сваркой. Центраторы для сборки и центровки трубопроводов. Технология газовой сварки различных швов. Особенности сварки гор...

Технология ручной дуговой сварки
В книге изложены основы теории сварки, устройство и правила эксплуатации оборудования для ручной дуговой и газовой сварки и наплавки металлов, контакт...

Технология автоматической сварки под флюсом
Сущность, особенности и области применения сварки под флюсом. Оборудование и материалы для сварки под флюсом. Технология автоматической дуговой сварки...

Газопламенная обработка металлов
В книге изложены следующие вопросы газопламенной обработки металлов: оборудование для производства ацетилена; аппаратура для питания сварочных постов...

Технология газовой сварки
Организация рабочего места сварщика. Подготовка металла и сборка деталей под сварку. Выбор и обоснование ее режимов, технология и этапы проведения. Пе...