Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Производство и технологии

Разработка технологического процесса термической обработки матрицы из стали 5ХНМ

Тип: курсовая работа
Категория: Производство и технологии
Скачать
Купить
Условия эксплуатации матрицы. Оценка воздействия технологических факторов на свойства материалов. Требования, предъявляемые к стали для штампов горячего деформирования. Перечень марок сталей и сплавов для изготовления пуансона-матрицы. Режимы обработки.
Краткое сожержание материала:

Размещено на

Введение

Значительная роль в развитии машиностроительной промышленности принадлежит термической обработке. Она является одной из основных, наиболее важных операций общего технологического цикла обработки, от правильного выполнения которой зависит качество (механические и физико-химические свойства) изготовляемых деталей машин и механизмов, инструмента и другой продукции.

Операция термической обработки деталей является важнейшим этапом технологического процесса, включающим изменение структурно-чувствительных свойств деталей под действие различных температурно-временных режимов.

Термической обработкой называют процесс обработки изделий из металлов и сплавов путем теплового воздействия с целью изменения их структуры и свойств в заданном направлении. От термической обработки зависят качество и стойкость деталей и инструмента.

Основные режимы термической обработки деталей - это температура и время, которые изменяются при заданном законе температуры печи. При этом имеется ряд дополнительных характеристик, определяющих структурное состояние нагреваемого объекта. Например, максимальная температура, до которой нагревается объект; время выдержки объекта при одной или нескольких температурах, скорости нагрева объекта и скорости его охлаждения.

Основной целью термической обработки деталей является получение необходимой структуры и свойств материала. При термической обработке под действием температур происходят не только структурные превращения, но изменяются деформационные характеристики детали. В результате этого в детали возникают внутренние трещины, образование которых связано с тепловой энергией, затрачиваемой на нагрев, приводящий к неоднородному распределению температуры в различных точках объема детали.

Проблемам управления процессами термической обработки деталей посвящено большое количество работ. При этом ключевым вопросом является оптимизация выбора температурных режимов с учетом конкретного материала и конкретной конфигурацией детали. В классической теории нагрева различают нагрев тонких и массивных тел, используя при этом критерий Био, являющийся отношением количества тепла, полученного поверхностью объекта, и количеством тепла, отведенного внутрь. При больших значениях критерия Био процесс теплопередачи на поверхность от среды происходит интенсивнее, чем отвод тепла внутрь объекта. При этом возникают большие градиенты между температурами поверхности и температурами внутренних точек объекта. При малых значениях критерия Био температурный градиент уменьшается, а значит, уменьшаются температурные напряжения в процессе термической обработки.

Термическую обработку стальных деталей производят в тех случаях, когда необходимо либо повысить прочность, твердость, износоустойчивость или упругость детали или инструмента, либо, наоборот, сделать металл более мягким, легче поддающимся механической обработке.

Целью моего курсового проекта является разработка технологического процесса термической обработки матрицы из стали 5ХНМ.

1. Условия эксплуатации и требования предьявляемые к материалу для изготовления матрицы

1.1 Условия эксплуатации матрицы. Оценка воздействия технологических факторов на свойства материалов

Основные технологические операции горячего деформирования можно разделить на несколько групп: объемная штамповка (прессование, высадка, калибровка, чеканка и др.), формовка, гибка, резка, свободная ковка на молотах. Наиболее «жесткое» температурно-силовое воздействие в процессе эксплуатации, как правило, испытывают рабочие части штампов объемного деформирования, поэтому основное внимание будет уделено именно этой группе инструментов. Примеры нагрузок штампов можно рассмотреть на рисунке 1.1.

Рисунок 1.1 - Механические и термические нагрузки штампов (Иnax = (0,5+0,68)И нагрева заготовки): а - гидравлический пресс; б - фрикционный пресс; в - свободно падающий молот.

При горячей объемной штамповке используется оборудование, которое характеризуется как отличительными конструктивными признаками, так и скоростью деформирования (гидравлические, кривошипные, фрикционные и гидровинтовые прессы, молоты, горизонтально-ковочные машины и т.д.):

o Прессовые инструменты, которые работают в условиях сравнительно медленного нагружения (0,5 - 2,5 м/с), что приводит к длительному контакту с заготовкой и соответственно к значительному разогреву их поверхности;

o Молотовые штампы, работающие в условиях ударного нагружения (5 -8 м/с); при этом их поверхность вследствие кратковременного контакта инструментов с заготовкой разогревается до более низких температур, чем поверхность прессовых инструментов;

o Инструменты для высокоскоростного деформирования (нагружение до 30 м/с), претерпевающие высокие ударные нагрузки и удельные давления; для них характерна кратковременность теплового и силового воздействия (время деформирования на скоростных молотах и гидровинтовых прессах составляет 0,001-0,06 с, на штамповочных молотах - 0,012-0,014 с, на прессах - 0,1-0,4 с).

Общими для штампов указанного назначения являются следующие признаки:

1. Высокий разогрев штамповых инструментов в процессе работы. Средняя температура поверхностных слоев (толщиной до 0,6-1 мм) штампов, скоростных молотов и прессов в наиболее нагруженных участках гравюры при штамповке жаропрочных и других труднодеформируемых материалов может достигать 650-750?С. Основная масса штампа остается прогретой до 200-400?С, а контактные поверхности рабочих частей штампов толщиной в несколько микрометров во многих случаях разогревается до 900-1000?С. Максимальные температуры разогрева поверхностных слоев рабочих частей молотовых штампов составляют 500-650?С.

Значительное влияние на тепловой баланс штамповых инструментов и особенно их рабочих поверхностей оказывают тип и качество смазки, а так же метод и интенсивность охлаждения.

2. Одновременное воздействие циклически изменяющихся температур и давлений. Наложение «рабочих» (т.е. обусловленных сопротивлением деформированию) и термических напряжений в сочетании с конструктивно неизбежными (резкие переходы, местные углубления и т.п.) и технологическими (подрезы, риски) концентраторами напряжений способствует возникновению в теле штампа сложного напряженного состояния. Наличие значительных температурных градиентов по сечению инструментов, а также циклический характер теплового воздействия в сочетании с циклически изменяющимися напряжениями (вызывающими развитие пластической деформации в микрообъемах) способствуют значительному возрастанию скорости диффузионных процессов и существенно ускоряют тепловое разупрочнение и соответственно выход инструментов из строя.

3. Высокие удельные давления на поверхностные слои. Величина удельного давления на инструмент при горячей штамповке зависит от вида штампуемого материала, температуры нагрева, конфигурации детали, качества смазки, степени удаления окалины, величины износа штампа и т.д. При деформировании на прессах средние значения q могут колебаться от 100-200 МПа (углеродистые и низкоуглеродистые стали) до 300-500 МПа (нержавеющие и жаропрочные стали, сплавы титана), возрастая в 1,5 - 3 раза в наиболее нагруженных участках гравюры вследствие концентрации напряжений. Воздействие еще более высоких удельных давлений (до 1000-1500 МПа при обработке специальных материалов) испытывают рабочие поверхности молотовых штампов (вставок), что обусловлено возрастанием сопротивления деформированию вследствие затрудненности протекания рекристаллизационных процессов в сталях (сплавах) при увеличении скорости нагружения.

1.2 Требования, предъявляемые к стали для штампов горячего деформирования

Штамповые стали горячего деформирования должны обладать определенным комплексом эксплуатационных и технологических свойств; помимо этого, к ним предъявляют соответствующие требования экономического характера. К эксплуатационным относят свойства материала готового инструмента после окончательной обработки; эти свойства должны обеспечивать необходимую работоспособность штампов в заданных условиях эксплуатации. Анализ причин выхода из строя показывает, что стали, предназначенные для изготовления штампов горячего деформирования, должны обладать следующими эксплуатационными свойствами в диапазоне температур и времени работы:

o высокой теплостойкостью, которая характеризует способность стали сохранять без значительных изменений структуру и свойства (Сталь 5ХНМ: T=5900С, время = 4ч, HRCэ=37);

o высоким сопротивлением пластической деформации (Сталь 5ХНМ: Х0.2 =600 МПа);

o высокой износостойкостью;

o высокой разгаростойкостью или термоусталостным сопротивлением (сопротивлением термической усталости) в условиях циклических температурно-силовых воздействий;

o высоким сопротивлением хрупкому разрушению, с помощью которого оценивают прочность стали при динамическом нагружении или в условиях высокой неравномерности приложения нагрузки (вязкость сталей для горячего деформирования должна быть не ниже 30-35 Дж/см2 (при температуре 20 °С) и 50 Дж/см2 (при температуре эксплуатации) при твердости 46 HRC) .

Иногда к эксплуатационным свойствам стали для штампов горячего деформирования усло...

Другие файлы:

Разработка технологического процесса термической обработки детали
Ознакомление с методикой разработки технологического процесса термической обработки деталей: автомобилей, тракторов и сельскохозяйственных машин. Расш...

Разработка технологического процесса изготовления и термической обработки шлицевого вала
Метод получения детали. Назначение припусков, допусков и напусков. Расчёт режимов термической обработки. Определение последовательности кузнечных опер...

Проект участка химико-термической обработки
Проектирование участка химико-термической обработки зубчатых колёс коробки передач с раздаточной коробкой. Выбор марки стали и разработка технологичес...

Разработка технологического процесса изготовления матрицы
Совершенствование технологического процесса изготовления матрицы для среднесерийного производства. Изучение способа получения заготовки методом литья...

Разработка технологического процесса изготовления и термической обработки детали
Технологический процесс изготовления крышки редуктора литьем. Выбор способа формовки и положения отливки в форме, разработка чертежей. Расчет литников...