Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Производство и технологии

Процессы разложения и восстановления шихтовых материалов по высоте доменной печи

Тип: контрольная работа
Категория: Производство и технологии
Скачать
Купить
Процессы разложения плавильных материалов. Процессы восстановления в доменной печи: термодинамика и кинетика восстановления оксидов. Влияние разных факторов на параметры этого процесса и их связь с технико-экономическими показателями доменной плавки.
Краткое сожержание материала:

Размещено на

Размещено на

Тема: Процессы разложения и восстановления шихтовых материалов по высоте доменной печи

Содержание

разложение восстановление доменная печь плавка

Введение

1. Процессы разложения плавильных материалов

2. Процессы восстановления в доменной печи

2.1 Структура и свойства оксидов железа

2.2 Термодинамика восстановления оксидов железа и оксидов попутных элементов

2.3 Кинетика восстановления оксидов в доменной печи

2.4 Влияние различных факторов на скорость восстановления

2.5 Параметры процесса восстановления в доменных печах и их связь с технико-экономическими показателями доменной плавки

Литература

ВВЕДЕНИЕ

Процесс получения чугуна есть совокупность ряда самостоятельных, сложных явлений, взятая в их взаимовлиянии. К ним относятся процессы восстановления оксидов и сложных соединений, разложения гидратов и солей, горения твердого, жидкого и газообразного горючего, твердофазные и гетерогенные химические реакции, теплообмен, движение твердых, жидких и газообразных составляющих и другие. Взаимовлияние и одновременность протекания этих процессов усложняют анализ плавки, затрудняют определение зависимостей, характеризующих ход процесса. В связи с этим, при доменной плавке должно учитываться их взаимодействие.

1. ПРОЦЕССЫ РАЗЛОЖЕНИЯ ПЛАВИЛЬНЫХ МАТЕРИАЛОВ

В шихтовых материалах всегда содержится определенное количество физически или химически связанной воды. Содержание физически адсорбированной или гигроскопической влаги в агломератах и окатышах зависит от климата, времени года и составляет от 0,2-0,5 до 1--2%, в коксе (мокрого тушения) 1--4%, в марганцевой руде иногда 5% и более. Температура на колошнике доменной печи, куда попадают компоненты шихты, 200--400 °С, т. е. значительно выше температуры кипения воды. Поэтому перевод гигроскопической влаги в пар и его удаление из шихты начинаются на верхних горизонтах печи сразу после нагрева кусков шихты до температуры колошника.

Испарение гигроскопической влаги и связанный с этим дополнительный расход тепла практически не сказываются на эффективности тепловой работы доменной печи, а следовательно, и на расходе горючего, так как вызывают лишь некоторое уменьшение количество тепла, теряемого печью с отходящими газами.

Гидратная вода может попадать в доменную печь с бурожелезняковыми рудами или рудами, содержащими гидратную воду в пустой породе. В настоящее время количество гидратной воды в доменной шихте очень мало, поскольку более 90% руды, поступающей в переплав, проходит предварительную высокотемпературную обработку (агломерация, производство окатышей), при которой гидраты разлагаются. Для испарения и перегрева 1 кг гидратной воды требуется около 4,2 МДж тепла. Выделяющийся из гидратов водяной пар может реагировать с оксидом углерода при низких температурах -- до 500--700 °С, а с твердым углеродом при температурах выше 1000 °С:

Н2Опар + СО = Н2 + СО2 + 41,45 МДж;

Н2Опар + С = Н2 + СО ~ 124,87 МДж.

При 800-1100 °С выделяются также летучие вещества кокса, обычное содержание которых в коксе 1--2,5%, в том числе 10-15% СО2, 20-30% СО, 35-40% Н2, 20-30% N2, 10-20% СН4, 0-10% O2.

Доля карбонатов, поступающих в доменную шихту с железными (РеСO3) и марганцевыми (МпСO3) рудами, невелика. Большое значение имеют флюсующие добавки к шихте -- известняк или доломит (СаСO3, СаСO3-МgС03). В доменной печи разложение карбонатов протекает по реакциям:

СаСО3 = СаО + С02 - 178,5 МДж;

МgСО3 = МgO + С02 - 109,87 МДж;

МпС03 = МпО + С02 - 96,35 МДж;

FеСО3 = FеО + СO2 - 87,91 МДж.

Для доменного процесса наиболее важное значение имеет реакция разложения карбоната кальция. Зависимость упругости диссоциации карбоната кальция от температуры выражается уравнением:

Рсо2 =-(8920/7)+ 7,54.

При Pco2 = 98 кПа, Т= 1183 К

Разложение СаС03 в доменной печи должно начаться при равенстве упругости диссоциации известняка и парциального давления углекислоты в доменной печи.

Линия Pco2 построена из предположения, что содержание С02 в газе при температуре выше 1000 °С мало, а при 300 °С равно 18%. При повышенном давлении газа в печи (294 кПа на колошнике печи) давление у фурм выше 392 кПа. В этих условиях парциальное давление углекислоты на колошнике составит 294-0,18 = 54 кПа или 22 кПа в случае интерполяции кривой рс02 при 600 °С (упругость диссоциации СаС03 в условиях этой температуры еще мала). Пересечение линий 4 и Рсо2 соответствует температуре начала разложения известняка. Разложение кусков известняка идет по зонам, от периферии к центру.

По мере прогрева куска из внутренних слоев известняка выделяется углекислота, удаление которой лимитируется диффузией газа в порах. При этом на скорость диффузии влияет общее давление газа в печи, которое тормозит переход С03 в газовую среду. Диссоциация известняка беспрепятственно протекает при условии, что упругость диссоциации превышает общее давление газа в печи. В рассматриваемом случае такие условия создаются при температуре порядка 1000 °С (линия Рпечи соответствует изменению общего давления газа в печи в зависимости от температуры).

Разложение известняка идет без изменения средней температуры куска, так как все тепло, подводимое к куску, расходуется на покрытие эндотермического эффекта реакции диссоциации. Поэтому по аналогии с процессом кипения воды процесс разложения называют «химическим кипением». Выделяющийся диоксид углерода при температуре выше 1000 °С реагирует с углеродом кокса:

СО2 + С = 2СО - 166,3 МДж

со значительным эндотермическим эффектом и тратой дефицитного дорогостоящего кокса. Поэтому необходимо стремиться, чтобы разложение известняка оканчивалось при возможно более низкой температуре.

Эндотермический эффект реакции разложения известняка, взаимодействие выделяющегося диоксида углерода с углеродом кокса и снижение восстановительного потенциала газа в печи из-за разбавления его диоксидом углерода ухудшают показатели доменной плавки и особенно сильно влияют на расход кокса. Теоретические аспекты этого вопроса впервые рассмотрел А.Н. Рамм.

Степень участия образовавшегося при разложении СаС03 диоксида углерода в этой реакции установить трудно. Приняв, что половина С02, выделившегося из известняка, участвует в этой реакции, получаем дополнительный расход тепла: 3,78-0,5 = 1,89 МДж. Таким образом, на 1 кг С02 известняка тратится 4,057 + 1,89 = 5,947 МДж. В пересчете на 1 кг известняка, содержащего 43% С02, это составит 5,947-0,43 = 2,557 МДж. Каждый 1 кг углерода при сгорании у фурм по реакции

С + 1/202 = СО + 117,94 МДж выделяет 117,94 : 12 = = 9,828 МДж.

Если учесть, что в коксе ~85% С и до фурм доходит ~80% всего кокса, то 1 кг кокса у фурм выделяет 9,828-0,85-0,8 = 6,883 МДж. Тогда дополнительный расход кокса на 1 кг известняка составит 2,557:6,883 = 0,37 кг/кг.

В этом приближенном расчете не учитывают изменение восстановительной работы газов, тепловые потери и т. д., однако его результаты хорошо согласуются с производственными данными для доменных печей России, Японии и других стран. Экономия кокса при выводе известняка из доменной шихты составляет 0,20--0,40 кг/кг известняка, что свидетельствует о степени значимости офлюсования агломерата и окатышей для экономии горючего в плавке.

2. ПРОЦЕССЫ ВОССТАНОВЛЕНИЯ В ДОМЕННОЙ ПЕЧИ

Основными восстановителями в доменном процессе являются углерод, монооксид углерода и водород. Сравнение сродства к кислороду восстановителей и восстанавливаемых оксидов (мерой сравнительной прочности может служить стандартное изменение свободной энергии реакции ДG°) позволяет определить температуру начала восстановления оксидов. Из диаграммы изменения свободной энергии реакции с температурой элементы, попадающие с шихтой в доменную печь, в зависимости от их превращений в условиях доменной плавки можно разделить на практически полностью восстанавливающиеся (Fе, Ni, Со, РЬ, Си, Р, Zn и др.); частично восстанавливающиеся (Si, Мn, Сг, V, Тi и др.); не претерпевающие восстановления (Са, Мg, Аl, Ва и др.).

2.1 Структура и свойства оксидов железа

Железо образует с кислородом три стабильных оксида: Fe 1-y О, Fе3O4 и Fе2O3 (рис.1). Вюстит Fe 1-y О может содержать от 23,1 до 25,6% 02. Отсюда видно, что стехиометрическое отношение Fе : О = 1, соответствующее 22,3% 02, не достигается. Решетка вюстита гра- недентрированная кубическая типа NаСl. Если все узлы решетки, соответствующие ионам кислорода, заняты, то в узлах ионов железа имеются вакансии. Для выполнения условия электронейтральности в решетке должно находиться эквивалентное количество ионов трехвалентного железа. Некоторое количество положительных зарядов ионов железа может передвигаться по решетке между ионами двух- и трехвалентного железа. Эти так называемые дефектные электроны являются носителями электричества и причиной электропроводности вюстита. Вакантные узлы делают возможным передвижение по решетке ионов железа, при этом вакансия иона железа блуждает в противоположном направлении. Между коэффициентом самодиффузии железа в вюстите DFе и коэффициентом диффузии вакансий Dв существует следующая зависимость: y Dв = (1 - y) DFe.

Коэффициент диффузии вакансий в ос...

Другие файлы:

Химический состав шихтовых материалов доменной плавки
Расчет шихты доменной печи. Средневзвешенный состав рудной смеси. Выбор состава чугуна и шлака. Оценка физических и физико-химических свойств шлака. З...

Распределение материалов на колошнике доменной печи при загрузке
Влияние порядка загрузки материалов, уровня засыпи и подвижных плит на распределение и газопроницаемость шихты по сечению модели колошника доменной пе...

Капитальный ремонт доменной печи
Устройство, назначение и принцип действия доменной печи. Выбор и расчет гибких строп для капитального ремонта доменной печи. Расчет отводных блоков. О...

Производство чугуна. Краткое руководство доменной плавки
В книге в краткой форме рассмотрены теоретические вопросы доменной плавки: восстановительная работа доменного газа, образование чугуна и шлака, поведе...

Процессы горения топлива в доменной печи
Главные функции, выполняемые горном доменной печи. Скорость реакции горения топлива, диффузия молекул кислорода в пограничный слой. Количество образую...