Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Производство и технологии

Исполнительные механизмы автоматических систем

Тип: дипломная работа
Категория: Производство и технологии
Скачать
Купить
Классификация исполнительных механизмов автоматических систем по виду энергии, создающей усилие (момент) перемещения регулирующего органа. Основные конструкции электрических, гидравлических и пневматических исполнительных механизмов, методы управления.
Краткое сожержание материала:

103

Дипломная работа

Исполнительные механизмы автоматических систем

ТЭФ

Содержание

  • Введение
    • 1. Классификация исполнительных механизмов
    • 2. Электрические исполнительные механизмы
    • 2.1 Общие сведения
    • 2.2 Классификация
    • 2.3 Конструкции электрических исполнительных механизмов
    • 3. Гидравлические исполнительные механизмы
    • 3.1 Общие сведения
    • 3.2 Классификация
    • 3.4 Конструкции гидравлических исполнительных механизмов
    • 4. Пневматические исполнительные механизмы
    • 4.1Общие сведения
    • 4.2 Классификация
    • 4.3 Конструкции пневматических исполнительных механизмов
    • 5. Лабораторная работа
    • Заключение
    • Литература

Введение

В современной жизни человека механизмы и машины играют важную роль. Они широко применяются в народном хозяйстве, промышленности, сельском хозяйстве, специальных областях техники, медицине, космической промышленности, быту и т.д.

С каждым днем увеличивается потребность в машинах и механизмах для многих устройств автоматики, телемеханики, связи, промышленной электроники, счетно-решающей и измерительной техники, предметов повседневного спроса.

В автоматических линиях, в промышленных работах, в приборах измерения и управления применяется большое число управляемых и неуправляемых исполнительных механизмов.

1. Классификация исполнительных механизмов

Исполнительный механизм - 1) устройство, выполняющее непосредственно требуемую технологическую операцию;

2) механизм автоматической системы регулирования, осуществляющий в соответствии с сигналами механическое воздействие на объект регулирования.

Рисунок 1.1 - Классификация исполнительных механизмов

Исполнительные механизмы, применяемые в системах автоматически, очень разнообразны. Классификация производится в первую очередь по виду энергии, создающей усилие (момент) перемещения регулирующего органа. Соответственно, исполнительные механизмы бывают пневматические, гидравлические и электрические, механические и комбинированные.

По конструкции различают электродвигательные, электронные, электромагнитные, поршневые, мембранные и комбинированные исполнительные механизмы.

В пневматических исполнительных механизмах усилие перемещения создается за счет давления сжатого воздуха на мембрану, поршень или сильфон; давление обычно не превышает 10і кПа. В гидравлических исполнительных механизмах усилие перемещения создается за счет давления жидкости на мембрану, поршень или лопасть; давление жидкости в них находится в пределах (2,5 - 20) 10і кПа.

Отдельный подкласс гидравлических исполнительных механизмов составляют исполнительные механизмы с гидромуфтами.

Пневматические и гидравлические мембранные и поршневые исполнительные механизмы подразделяются на пружинные и беспружинные В пружинных исполнительных механизмах усилие перемещения в одном направлении создается давлением в рабочей полости исполнительного механизма, а в обратном направлении - силой упругости сжатой пружины. В беспружинных исполнительных механизмах усилие перемещения в обоих направлениях создается перепадом давления на рабочем органе механизма.

По характеру движения выходного элемента большинство исполнительных механизмов подразделяются на: прямоходные с поступательным движением выходного элемента, поворотные с вращательным движением до 360° (многооборотные).

Управление исполнительными механизмами осуществляется, как правило, через усилители мощности. Помимо того, непосредственно к исполнительным механизмам может подводиться энергия от дополнительного источника, т.е. используются одновременно два вида энергии: электропневматические, электрогидравлические и пневмогидравлические. Вид энергии управляющего сигнала может отличаться от вида энергии, создающей усилие перемещения.

В электрических системах автоматизации и управления наиболее широко применяются электродвигательные (электромашинные) и электромагнитные исполнительные механизмы. Основным элементом электромашинного исполнительного механизма является электрический двигатель постоянного или переменного тока. Такие исполнительные механизмы обычно называют электроприводами, т.к согласно ГОСТ электропривод - это электромеханическая система, состоящая из электродвигательного, электрического преобразовательного, механического передаточного, управляющего и измерительного устройств, предназначенная для приведения в движение исполнительных органов рабочей машины и управлении этим движением. Электромагнитные ИМ дискретного действия выполняются в основном на базе электромагнитов постоянного и переменного тока и постоянных магнитов. Жесткое и упругое соединение узлов систем осуществляют различного рода электромагнитные муфты.

ИМ должны удовлетворять следующим требованиям:

мощность их должна превосходить мощность, необходимую для приведения в движение объекта управления или его органов во всех режимах работы;

статические характеристики исполнительных механизмов должны быть по возможности линейными и иметь минимальные зоны нечувствительности (зоной нечувствительности называется зона, в пределах которой изменение управляющего сигнала не вызывает перемещение управляемого объекта или его органов);

как наиболее мощные функциональные звенья автоматических систем регулирования должны обладать достаточным быстродействием;

регулирование выходной величины должно быть по возможности простым и экономичным;

должны иметь малую мощность управления.

В качестве исполнительных механизмов в системах автоматики в основном применяются мощные электромагнитные реле, электромагниты, электродвигатели постоянного тока, двухфазные электродвигатели переменного тока, электромагнитные муфты, мембранные и поршневые, гидравлические и пневматические двигатели и др.

2. Электрические исполнительные механизмы

2.1 Общие сведения

Электрическими исполнительными (управляемыми) двигателями автоматических систем называют двигатели, предназначенные для преобразования электрического сигнала в угол поворота или частоту вращения (или перемещения) вала. Такие механизмы, преобразуют энергию электрического тока в механическую энергию с целью воздействия на объект управления или его органы.

Исполнительные механизмы представляют собой электроприводы, предназначенные для перемещения регулирующих органов в системах дистанционного и автоматического управления. В настоящее время наибольшее распространение получили асинхронные двухфазные исполнительные двигатели, исполнительные двигатели постоянного тока с независимым возбуждением или с возбуждением от постоянных магнитов, шаговые двигатели.

Эти двигатели предназначены для различных функциональных преобразований. В зависимости от устройства они могут работать либо в режиме непрерывного вращения (перемещения), либо в шаговом режиме.

Электрические микродвигатели постоянного и переменного тока, применяемые в системах автоматики, вычислительной техники и др., имеют номинальную механическую мощность от сотых долей ватта примерно до 750 Вт.

Требования, предъявляемые к исполнительным двигателя, вытекают из специфических условий работы исполнительных двигателей в устройствах автоматики. Основные из них:

высокое быстродействие (малая инерционность);

возможность регулирования частоты вращения исполнительного двигателя в широком диапазоне;

отсутствие самохода (явление самохода состоит в том, что двигатель продолжает развивать вращающий момент и его ротор продолжает вращаться при сигнале управления);

высокая линейность регулировочных и механических характеристик и обеспечение устойчивости работы во всем рабочем диапазоне угловых скоростей;

малый момент трения (малое напряжение трогания).

малая мощность управления при значительной механической мощности на валу (требование вызвано ограниченной мощностью источников сигнала управления, в основном электронных).

Немаловажным для исполнительных двигателей являются и такие параметры, как пусковой момент, габариты, масса; КПД и cosц имеют второстепенное значение. Когда требуется строго постоянная частота вращения, используются синхронные двигатели.

К основным элементам электрических исполнительных механизмов относятся:

электродвигатель;

редуктор, понижающий число оборотов;

выходное устройство для механического сочленения с регулирующим органом;

дополнительные устройства, обеспечивающие остановку механизма в крайних положениях.

Выходные устройства электрических исполнительных механизмов выполняются так, чтобы осуществить вращательное или прямолинейное движение.

Исполнительные механизмы рассчитаны для работы при температуре окружающей среды от - 30 до +60°С и относительной влажности 30 - 80% (по договоренности с з...

Другие файлы:

Исполнительные устройства автоматических систем
Рассматриваются исполнительные устройства, широко используемые в системах автоматического управления: электромагнитные механизмы, электромашинные и...

Автоматизация химических производств
Теория, расчет и проектирование систем автоматизации.Рассмотрены общие вопросы автоматизации химических производств. Для студентов химико-технологичес...

Основы автоматики
Описаны измерительные, усилительные и исполнительные элементы автоматики, их принцип работы и области применения. Изложены основы построения систем ав...

по дисциплине: Введение в специальность на тему: «Исполнительные органы автоматических систем»

Судовая электроавтоматика
Содержание Общая характеристика, принципы построения и математическое описание автоматических системДинамические характеристики, преобразование структ...