Студенческий сайт КФУ - ex ТНУ » Учебный раздел » Учебные файлы »Производство и технологии

Беспламенное сжигание метана на палладиевых и оксидных катализаторах

Тип: дипломная работа
Категория: Производство и технологии
Скачать
Купить
Каталитическое сжигание метана. Поиск методов снижения концентрации оксидов азота. Условия приготовления и исследование физико-химических характеристик палладиевого и оксидного катализаторов, нанесенных на ячеисто-каркасный металлический носитель.
Краткое сожержание материала:

Размещено на

Содержание

  • Введение
  • Обзор литературы
  • Сжигание метана на нанесенных Pd и Pt катализаторах
  • Окисление метана на оксидных катализаторах
  • Заключение по обзору литературы
  • Методика эксперимента
  • Список литературы

Введение

Интерес к изучению каталитического (беспламенного) сжигания метана возник сравнительно недавно. Первые систематические исследования в этой области были выполнены в начале 80-х годов. Постановка этих работ была обусловлена необходимостью решения ряда проблем экологической направленности. К ним в частности относятся:

создание экологически безопасных энергоустановок, базирующихся на сжигании метана;

разработка систем для каталитического окисления метана, содержащегося в газах, удаляемых при вентиляции шахтных угольных разрезов;

дожигание метана, присутствующего в газовых выбросах стационарных генераторов электрической энергии на основе водородных топливных элементов, использующих природный газ в качестве первичного энергоносителя.

Первая из обозначенных проблем связана с поиском методов снижения концентрации оксидов азота, образующихся в результате конверсии азота кислородом воздуха при пламенном сжигании метана в условиях, когда температура в топочном пространстве может достигать 1700?C. В этом случае содержание NOx в отходящем газовом потоке составляет 30-50 ppm и значительно превышает санитарно допустимые нормы.

Традиционные приемы очистки газовых выбросов энергоустановок предполагают связывание оксидов азота при каталитическом взаимодействии их с инжектируемым в газовый поток газами восстановителями: аммиаком или метаном. Такое решение сопряжено со значительными экономическими затратами.

Альтернативным вариантом является снижение температуры пламени до 1300-1400°С, что обеспечивает десятикратное уменьшение содержание NOx и позволяет вообще отказаться от использования дорогостоящего оборудования для очистки отходящих газов. Реализация этого решения базируется на использовании каталитических систем сжигания метана [1-16]. В литературе этот процесс предлагают проводить в две последовательные стадии, а именно стадию поджигания газовой смеси (Т=600-900?С) и стадию полного сжигания метана (1300-1400?С).

Новыми сферами практического применения метана является использование его в стационарных генераторах электрической энергии на основе водородных топливных элементов, а также в качестве топлива для большегрузных автомобилей. Актуальность этих направлений была подчеркнута в ряде международных соглашений.

Привлекательность природного газа, как топлива, обусловлена не только его большими запасами, но также тем, что данное природное сырье:

содержит серу, как правило, в значительно меньших концентрациях, чем нефть;

обеспечивает почти двух кратное снижение концентрации СО2 в газовых выбросах, только за счет того, что отношение С/H в метане почти в два раза меньше, чем в жидком углеводородном топливе;

исключает возможность загрязнения атмосферы оксидами азота, поскольку в дизельном двигателе воспламенение топлива осуществляется при гораздо более низких температурах, чем в двигателях Отто;

содержит смолистые вещества, в значительно меньших концентрациях, чем жидкое топливо.

В совокупности все это приводит к выводу, что замена жидкого дизельного топлива на метан позволит даже без дополнительной очистки газовых выбросов придти к уровню, предусмотренному стандартом EURO IV, действующим до 2008г [17].

Однако практическая реализация этого проекта, а также проекта, связанного с использованием стационарных энергетических установок, основанных на водородных топливных элементах, должна базироваться на использовании систем каталитического дожигания метана, концентрация которого в газовых выбросах может достигать 0,2-0,5%.

Сходную задачу приходится решать при сжигании метана, содержащегося в газах, удаляемых при вентиляции на угольных разрезах.

Обобщая изложенное, можно отметить, что проблема каталитического сжигания метана имеет важное практическое значение, как применительно к газовым смесям с высоким содержанием метана, так и к газовым потокам с содержанием метана в небольших концентрациях (<2%) (lean burn gas mixture).

При сжигании метана наиболее эффективными являются палладиевые катализаторы, нанесенные на поверхность различных оксидных носителей (Al2O3 ZrO2, ZrO2-Y2O3). Однако в последние годы внимание разработчиков привлекают также ячеисто-каркасные металлические носители, представляющие интерес по той причине, что в этом случае процедура приготовления нанесенного катализатора существенно проще, чем традиционная технология, включающая стадии пропитки, сушки, термообработки и активирования. Эти катализаторы обладают также рядом других конструктивных и эксплуатационных преимуществ. Однако в литературе отсутствуют данные о характеристиках палладиевых катализаторов нанесенных на металлические носители, что осложняет решение вопроса о возможности практического использования каталитических систем подобного типа.

Наряду с нанесенными палладиевыми катализаторами значительный интерес представляют оксидные катализаторы со структурой перовскита и флюорита. К числу их относятся композиции: La0,9Ce0,1CoO3-x, Cu0.2Zr0.8Ox, Cu0.08 [Ce (La)] 0.92Ox. По эффективности они несколько уступают палладиевым катализаторам, но значительно дешевле последних и в течении длительного времени сохраняют высокий уровень активности при эксплуатации до 1100єС.

беспламенное сжигание метан катализатор

К группе оксидных катализаторов относятся также промышленные цемент-содержащие катализаторы, применяемые для полного окисления газообразных органических веществ. Примером, в частности, может служить катализатор НТК-10-7Ф. Окислительный процесс в этом случае происходит на оксидах меди и марганца. Анализ литературных данных показывает, что катализаторы подобного типа при дополнительной обработке в определенных условиях (модифицировании) могут быть преобразованы к композициям, которые включают фрагменты, обладающие структурой флюорита. Этот эффект может быть достигнут при модифицировании промышленного катализатора диоксидом церия. При положительном результате открывается возможность практического использования промышленных катализаторов данного типа для каталитического низкотемпературного окисления метана.

Целью данной работы явилось определение условий приготовления и исследование физико-химических характеристик палладиевого катализатора, нанесенного на ячеисто-каркасный металлический носитель, а также промышленного катализатора (НТК-10-7Ф), модифицированного диоксидом церия.

Обзор литературы

В обзоре литературы будут рассмотрены вопросы, связанные с условиями приготовления и характеристиками катализаторов на основе благородных металлов, оксидов переходных металлов (активность, энергия активации, порядки реакции по реагентам), а также изложены существующие представления о механизме из действия.

Сжигание метана на нанесенных Pd и Pt катализаторах

Анализ данных о полном сжигании метана на благородных металлах при низких температурах был предметом обстоятельного обзора, опубликованного Желин и Приме [17], а также в статьях тематического номера журнала Catalysis Today [1, 18-23].

Принципы подхода к экспериментальному изучению свойств катализаторов данного типа и характеристики их активности

Прежде чем приступить к обсуждению результатов этих работ, следует обратить внимание, что в последние годы тестирование катализаторов основывается на изучении зависимости степени превращения метана от температуры при фиксированной скорости газового потока. Эта зависимость (рис.1) имеет вид сложной кривой, которую можно рассматривать, как сочетание начального экспоненциального участка и параболической кривой при высоких температурах.

Вид кривой (ее кривизна и положение относительно оси температур) зависит от скорости газового потока (времени контакта) и активности катализатора. Таким образом, регистрируемая кривая является характеристикой, отражающей, с одной стороны возрастание скорости процесса с температурой и, с другой стороны, связанной с уменьшением скорости процесса вследствие снижения концентрации реагента и проявления ингибирующего действия продукта реакции. Чем более полого регистрируемая кривая приближается к координате 100% -го превращения, тем сильнее выражено действие тормозящих факторов. На практике, эту кривую принято использовать для нахождения так называемой температурой зажигания процесса (light off temperature - LOT).

Рис.1. Типичный вид зависимости степени превращения метана от температуры

Чаще всего при этом указывают значение температуры, соответствующей 50% конверсии метана, например, эта величина составляет 300°С для нанесенных палладиевых катализаторов на поверхность частиц SiO2, 253°С для Pd/ZrO2, 370°C для Pd/SnO2, 360°C для Pd/Al

Другие файлы:

Конверсия биогаза на содержащих катализаторах
Создание катализаторов для процессов углекислотной и пароуглекислотной конверсии биогаза. Подбор параметров процессов для получения синтез-газа с регу...

Изучение условий возникновения колебательного режима при окислительном карбонилировании алкинов в присутствии палладиевых катализаторов
Данная дипломная работа посвящена изучению условий возникновения колебательного режима при окислительном карбонилировании алкинов в присутствии паллад...

Проблемы метана в угольных шахтах
Экологические и энергетические проблемы угольного метана. Основные принципы метанобезопасности. Шахтный метан - решение проблем. Газодинамические явле...

Биогеохимический цикл метана в океане
В монографии рассмотрены геолого-минералогичсские и микробиологические аспекты круговорота метана в «оде и осадках различных районов Мирового океана....

Свойства оксидных покрытий, полученных с помощью дуального магнетрона
Способы нанесения оксидных пленок. Физические основы работы магнетронных распылительных систем. Особенности нанесения оксидов дуальной магнетронной ра...